+0

# Pls long solution hard

0
211
3

We're going to consider the matrix $$\begin{pmatrix} -4 & -15 \\ 2 & 7 \end{pmatrix}$$
(a) Let $${P} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$$. Find the 2x2 matrix D such that
$${P} {D} {P}^{-1} = \begin{pmatrix} -4 & -15 \\ 2 & 7 \end{pmatrix}$$
(b) Find a formula for $$D^n$$ where n is the matrix you found in part (a).
(You don't need to prove your answer, but explain how you found it.)

(c) Using parts (a) and (b), find a formula for $$\begin{pmatrix} -4 & -15 \\ 2 & 7 \end{pmatrix}^n$$

Mar 8, 2019

#1
+23856
+2

We're going to consider the matrix

$$\begin{pmatrix} -4 & -15 \\ 2 & 7 \end{pmatrix}$$

a)
Let $${P} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$$.
Find the 2x2 matrix D such that

$${P} {D} {P}^{-1} = \begin{pmatrix} -4 & -15 \\ 2 & 7 \end{pmatrix}$$

$$\text{Let M = \begin{pmatrix} -4 & -15 \\ 2 & 7 \end{pmatrix}  }$$

Formula:

$$\begin{array}{|rcll|} \hline P^{-1} &=& \dfrac{1}{\begin{vmatrix} 3 & -5 \\ -1 & 2 \end{vmatrix}}\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \\\\ &=& \dfrac{1}{6-5}\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \\\\ &=& \dfrac{1}{1}\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \\\\ \mathbf{P^{-1}} & \mathbf{=} & \mathbf{\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}} \\ \hline \end{array}$$

$$\begin{array}{|rcll|} \hline PDP^{-1} &=& M \quad | \quad \cdot P \\ PDP^{-1}P &=& MP \quad | \quad P^{-1}P = I(\text{Identity matrix}) \\ PDI &=& MP \quad | \quad \cdot P^{-1} \\ P^{-1}PDI &=& P^{-1}MP \quad | \quad P^{-1}P = I(\text{Identity matrix}) \\ IDI &=& P^{-1}MP \\ \mathbf{D} & \mathbf{=} & \mathbf{P^{-1}MP} \\ \hline \end{array}$$

$$\begin{array}{|rcll|} \hline \mathbf{D} & \mathbf{=} & \mathbf{P^{-1}MP} \\ &=& \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}\begin{pmatrix} -4 & -15 \\ 2 & 7 \end{pmatrix}\begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix} \\ &=& \begin{pmatrix} 2 & 5 \\ 2 & 6 \end{pmatrix}\begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix} \\ \mathbf{D} & \mathbf{=} & \mathbf{\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}} \quad | \quad (\text{Diagonal matrix}) \\ \hline \end{array}$$

Mar 8, 2019
#2
+23856
+2

(b)

Find a formula for  $$\mathbf{D^n}$$ where D is the matrix you found in part (a).
(You don't need to prove your answer, but explain how you found it.)

$$\begin{array}{|rcll|} \hline D &=& \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \\\\ D^2 &=& \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \\ &=& \begin{pmatrix} 1^2 & 0 \\ 0 & 2^2 \end{pmatrix} \\\\ D^3 &=& \begin{pmatrix} 1^2 & 0 \\ 0 & 2^2 \end{pmatrix}\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \\ D^3 &=& \begin{pmatrix} 1^3 & 0 \\ 0 & 2^3 \end{pmatrix} \\ \ldots \\ \mathbf{D^n} & \mathbf{=} & \mathbf{\begin{pmatrix} 1^n & 0 \\ 0 & 2^n \end{pmatrix}} \\ \hline \end{array}$$

Mar 8, 2019
#3
+23856
+1

c)
Using parts (a) and (b), find a formula for

$$\begin{pmatrix} -4 & -15 \\ 2 & 7 \end{pmatrix}^n$$

$$\begin{array}{|rcll|} \hline \mathbf{\begin{pmatrix} -4 & -15 \\ 2 & 7 \end{pmatrix}^n} &=& PD^nP^{-1} \\ &=& \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}\begin{pmatrix} 1^n & 0 \\ 0 & 2^n \end{pmatrix}\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \\\\ &=& \begin{pmatrix} \mathbf{6-5\cdot 2^n} & \mathbf{15(1-2^n)} \\ \mathbf{2(2^n-1)} & \mathbf{6\cdot 2^n-5} \end{pmatrix} \\ \hline \end{array}$$

Mar 8, 2019