Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
851
3
avatar

We're going to consider the matrix (41527)
(a) Let P=(3512). Find the 2x2 matrix D such that
PDP1=(41527)
(b) Find a formula for Dn where n is the matrix you found in part (a).
(You don't need to prove your answer, but explain how you found it.)

(c) Using parts (a) and (b), find a formula for (41527)n

 Mar 8, 2019
 #1
avatar+26397 
+2

We're going to consider the matrix

(41527)

 

a)
Let P=(3512).
Find the 2x2 matrix D such that

PDP1=(41527)

 

Let M=(41527) 

 

Formula:

P1=1|3512|(2513)=165(2513)=11(2513)P1=(2513)

 

PDP1=M|PPDP1P=MP|P1P=I(Identity matrix)PDI=MP|P1P1PDI=P1MP|P1P=I(Identity matrix)IDI=P1MPD=P1MP

 

D=P1MP=(2513)(41527)(3512)=(2526)(3512)D=(1002)|(Diagonal matrix)

 

laugh

 Mar 8, 2019
 #2
avatar+26397 
+2

(b)

Find a formula for  Dn where D is the matrix you found in part (a).
(You don't need to prove your answer, but explain how you found it.)

 

D=(1002)D2=(1002)(1002)=(120022)D3=(120022)(1002)D3=(130023)Dn=(1n002n)

 

laugh

 Mar 8, 2019
 #3
avatar+26397 
+1

c)
Using parts (a) and (b), find a formula for

(41527)n

 

(41527)n=PDnP1=(3512)(1n002n)(2513)=(652n15(12n)2(2n1)62n5)

 

laugh

 Mar 8, 2019

3 Online Users

avatar
avatar