Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1349
8
avatar

A regular dodecahedron P1P2P3P12 is inscribed in a circle with radius 1. Compute (P1P2)2+(P1P3)2++(P11P12)2. (The sum includes all terms of the form (PiPj)2, where 1i<j12.

There was another post with the same question but had the wrong answer

 Mar 22, 2020
 #1
avatar
0

Hint; " Sums of squares of lengths should make you think of what?"

 Mar 22, 2020
 #2
avatar+2096 
0

Nice, Guest! Another hint would be:

 

Since a dodecahedron is inscribed in a circle with radius one, (P1P2)2+(P1P3)2++(P11P12)2. would be TWO dodecahedrons.

 Mar 22, 2020
 #3
avatar
0

Would the answer just be equal to the perimeter of the dodecahedron times two?

Guest Mar 22, 2020
 #4
avatar+2096 
0

Squared, so technically two dodecahedrons, I think.

CalTheGreat  Mar 22, 2020
 #8
avatar+659 
0

I calculated the perimeter of the dodecagon. The answer is not the sum of two dodecagons, but nice try Cal!

AnExtremelyLongName  Mar 30, 2020
 #5
avatar
0

still not sure how to find the perimeter of the dodecahedron xd

 Mar 22, 2020
 #6
avatar+23254 
0

A regular dodecahedron has 12 congruent sides.

If the center of the circle is C, draw all the radii from C to each of the points P1, P2, ... P12.

Each of the triangles formed will be congruent to each other.

Consider the triangle, triangle(CP1P2).

Side CP1 = 1 and side CP2 = 1.

The central angle angle(P1CP2) = 30o.    (360o / 12o  =  30o)

Use the Law of Cosines on this triangle to find side P1P2:

     (P1P2)2  =  (CP1)2 + (CP2)2 - 2·(CP1)·(CP2)·cos( angle(P1CP2) )

     (P1P2)2  =  12 + 12 - 2·1·1·sqrt(3)/2

Find this value and multiply by 12.

 Mar 23, 2020
 #7
avatar+26396 
+2

A regular dodecahedron P1P2P3P12 is inscribed in a circle with radius 1.
Compute  (P1P2)2+(P1P3)2++(P11P12)2.
(The sum includes all terms of the form (PiPj)2, where 1i<j12.

 

Computes=(P1P2)2+(P1P3)2+(P1P4)2+(P1P5)2+(P1P6)2+(P1P7)2+(P1P8)2+(P1P9)2+(P1P10)2+(P1P11)2+(P1P12)2+(P2P3)2+(P2P4)2+(P2P5)2+(P2P6)2+(P2P7)2+(P2P8)2+(P2P9)2+(P2P10)2+(P2P11)2+(P2P12)2+(P3P4)2+(P3P5)2+(P3P6)2+(P3P7)2+(P3P8)2+(P3P9)2+(P3P10)2+(P3P11)2+(P3P12)2+(P4P5)2+(P4P6)2+(P4P7)2+(P4P8)2+(P4P9)2+(P4P10)2+(P4P11)2+(P4P12)2+(P5P6)2+(P5P7)2+(P5P8)2+(P5P9)2+(P5P10)2+(P5P11)2+(P5P12)2+(P6P7)2+(P6P8)2+(P6P9)2+(P6P10)2+(P6P11)2+(P6P12)2+(P7P8)2+(P7P9)2+(P7P10)2+(P7P11)2+(P7P12)2+(P8P9)2+(P8P10)2+(P8P11)2+(P8P12)2+(P9P10)2+(P9P11)2+(P9P12)2+(P10P11)2+(P10P12)2+(P11P12)2

 

(P1P2)=(P2P3)=(P3P4)=(P4P5)=(P5P6)=(P6P7)=(P7P8)=(P8P9)=(P9P10)=(P10P11)=(P11P12)=(P1P12)=2sin(15)(P1P2)=(P2P4)=(P3P5)=(P4P6)=(P5P7)=(P6P8)=(P7P9)=(P8P10)=(P9P11)=(P10P12)=(P1P11)=(P2P12)=2sin(30)(P1P4)=(P2P5)=(P3P6)=(P4P7)=(P5P8)=(P6P9)=(P7P10)=(P8P11)=(P9P12)=(P1P10)=(P2P11)=(P3P12)=2sin(45)(P1P5)=(P2P6)=(P3P7)=(P4P8)=(P5P9)=(P6P10)=(P7P11)=(P8P12)=(P1P9)=(P2P10)=(P3P11)=(P5P12)=2sin(60)(P1P6)=(P2P7)=(P3P8)=(P4P9)=(P5P10)=(P6P11)=(P7P12)=(P1P8)=(P2P9)=(P3P10)=(P4P11)=(P5P12)=2sin(75)(P1P7)=(P2P8)=(P3P9)=(P4P10)=(P5P11)=(P6P12)=2sin(90)=2

 

s=12(2sin(15))2+12(2sin(30))2+12(2sin(45))2+12(2sin(60))2+12(2sin(75))2+6(2sin(90))2s=48sin2(15)+48sin2(30)+48sin2(45)+48sin2(60)+48sin2(75)+24s=48(sin2(15)+sin2(30)+sin2(45)+sin2(60)+sin2(75))+24s=48(sin2(15)+sin2(30)+sin2(45)+cos2(30)+cos2(15))+24s=48(sin2(15)+cos2(15)+sin2(30)+cos2(30)+sin2(45))+24s=48(2+sin2(45))+24|sin(45)=22s=48(2+12)+24s=4852+24s=245+24s=246s=144s=122

 

The sum is 122=144

 

laugh

 Mar 24, 2020

0 Online Users