A regular dodecahedron P1P2P3⋯P12 is inscribed in a circle with radius 1. Compute (P1P2)2+(P1P3)2+⋯+(P11P12)2. (The sum includes all terms of the form (PiPj)2, where 1≤i<j≤12.
There was another post with the same question but had the wrong answer
Nice, Guest! Another hint would be:
Since a dodecahedron is inscribed in a circle with radius one, (P1P2)2+(P1P3)2+⋯+(P11P12)2. would be TWO dodecahedrons.
I calculated the perimeter of the dodecagon. The answer is not the sum of two dodecagons, but nice try Cal!
A regular dodecahedron has 12 congruent sides.
If the center of the circle is C, draw all the radii from C to each of the points P1, P2, ... P12.
Each of the triangles formed will be congruent to each other.
Consider the triangle, triangle(CP1P2).
Side CP1 = 1 and side CP2 = 1.
The central angle angle(P1CP2) = 30o. (360o / 12o = 30o)
Use the Law of Cosines on this triangle to find side P1P2:
(P1P2)2 = (CP1)2 + (CP2)2 - 2·(CP1)·(CP2)·cos( angle(P1CP2) )
(P1P2)2 = 12 + 12 - 2·1·1·sqrt(3)/2
Find this value and multiply by 12.
A regular dodecahedron P1P2P3⋯P12 is inscribed in a circle with radius 1.
Compute (P1P2)2+(P1P3)2+⋯+(P11P12)2.
(The sum includes all terms of the form (PiPj)2, where 1≤i<j≤12.
Computes=(P1P2)2+(P1P3)2+(P1P4)2+(P1P5)2+(P1P6)2+(P1P7)2+(P1P8)2+(P1P9)2+(P1P10)2+(P1P11)2+(P1P12)2+(P2P3)2+(P2P4)2+(P2P5)2+(P2P6)2+(P2P7)2+(P2P8)2+(P2P9)2+(P2P10)2+(P2P11)2+(P2P12)2+(P3P4)2+(P3P5)2+(P3P6)2+(P3P7)2+(P3P8)2+(P3P9)2+(P3P10)2+(P3P11)2+(P3P12)2+(P4P5)2+(P4P6)2+(P4P7)2+(P4P8)2+(P4P9)2+(P4P10)2+(P4P11)2+(P4P12)2+(P5P6)2+(P5P7)2+(P5P8)2+(P5P9)2+(P5P10)2+(P5P11)2+(P5P12)2+(P6P7)2+(P6P8)2+(P6P9)2+(P6P10)2+(P6P11)2+(P6P12)2+(P7P8)2+(P7P9)2+(P7P10)2+(P7P11)2+(P7P12)2+(P8P9)2+(P8P10)2+(P8P11)2+(P8P12)2+(P9P10)2+(P9P11)2+(P9P12)2+(P10P11)2+(P10P12)2+(P11P12)2
(P1P2)=(P2P3)=(P3P4)=(P4P5)=(P5P6)=(P6P7)=(P7P8)=(P8P9)=(P9P10)=(P10P11)=(P11P12)=(P1P12)=2∗sin(15∘)(P1P2)=(P2P4)=(P3P5)=(P4P6)=(P5P7)=(P6P8)=(P7P9)=(P8P10)=(P9P11)=(P10P12)=(P1P11)=(P2P12)=2∗sin(30∘)(P1P4)=(P2P5)=(P3P6)=(P4P7)=(P5P8)=(P6P9)=(P7P10)=(P8P11)=(P9P12)=(P1P10)=(P2P11)=(P3P12)=2∗sin(45∘)(P1P5)=(P2P6)=(P3P7)=(P4P8)=(P5P9)=(P6P10)=(P7P11)=(P8P12)=(P1P9)=(P2P10)=(P3P11)=(P5P12)=2∗sin(60∘)(P1P6)=(P2P7)=(P3P8)=(P4P9)=(P5P10)=(P6P11)=(P7P12)=(P1P8)=(P2P9)=(P3P10)=(P4P11)=(P5P12)=2∗sin(75∘)(P1P7)=(P2P8)=(P3P9)=(P4P10)=(P5P11)=(P6P12)=2∗sin(90∘)=2
s=12∗(2∗sin(15∘))2+12∗(2∗sin(30∘))2+12∗(2∗sin(45∘))2+12∗(2∗sin(60∘))2+12∗(2∗sin(75∘))2+6∗(2∗sin(90∘))2s=48sin2(15∘)+48sin2(30∘)+48sin2(45∘)+48sin2(60∘)+48sin2(75∘)+24s=48(sin2(15∘)+sin2(30∘)+sin2(45∘)+sin2(60∘)+sin2(75∘))+24s=48(sin2(15∘)+sin2(30∘)+sin2(45∘)+cos2(30∘)+cos2(15∘))+24s=48(sin2(15∘)+cos2(15∘)+sin2(30∘)+cos2(30∘)+sin2(45∘))+24s=48(2+sin2(45∘))+24|sin(45∘)=√22s=48(2+12)+24s=48∗52+24s=24∗5+24s=24∗6s=144s=122
The sum is 122=144