We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
108
4
avatar+91 

The graph of \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]has its foci at $(0,\pm 4),$ while the graph of \[\frac{x^2}{a^2}-\frac{y^2}{b^2} = 1\]has its foci at $(\pm 6,0).$ Compute the value of $|ab|.$

 Jul 10, 2019
 #1
avatar+103120 
+2

\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]has its foci at $(0,\pm 4) \)

 

\(\frac{x^2}{a^2}-\frac{y^2}{b^2} = 1\]has its foci at $(\pm 6,0).\)

 

Find  l ab l

 

The first equation is an ellipse  with its center at (0, 0) and its major axis along y 

The equation for the focus  is    (0 , 0 ± c)  where  c = ±4

And we have that   a^2 - b^2  = c^2  ⇒  a^2 - b^2  = 16   (1)

 

The second equation is a hyperbola with its center at (0, 0)  and its major axis along x

The equation for the focus is  (0 ± c, 0)  where c = ±6

And we  have that a^2 + b^2  = c^2  ⇒  a^2 + b^2 =  36   (2)

 

Add  (1) and (2)   and we have that

 

2a^2  =  52

a^2  =  26   ⇒    a =  ±√26

 

And  using (2)

 

26 + b^2  = 36

b^2  =  10 ⇒  b = ±√10  

 

So

l ab l  =  l √26 * √10 l  =   l √ 2 * √13 * √2 * √5  l  =    2√65

 

 

cool cool cool

 

 

cool cool cool

 Jul 10, 2019
 #2
avatar+1342 
+6

Sorry, CPhill, just wondering if you knew how to space in latex.

 

If you do not know, you would put a \ and a space at the end of each word in the latex section, hence,

has\ its\ foci\ at

which would equal to:

\(has\ its\ foci\ at\)

 

\(tommarvoloriddle \)

tommarvoloriddle  Jul 11, 2019
 #3
avatar+103120 
0

THX, tom  for that helpful hint !!!

 

 

cool cool cool

CPhill  Jul 11, 2019
 #4
avatar+1342 
+5

np, cphill!

 

: )

tommarvoloriddle  Jul 11, 2019

37 Online Users

avatar
avatar
avatar