Processing math: 100%
 
+0  
 
+1
964
4
avatar+95 

The graph of x2a2+y2b2=1has its foci at (0,±4), while the graph of x2a2y2b2=1has its foci at (±6,0). Compute the value of |ab|.

 Jul 10, 2019
 #1
avatar+130475 
+2

x2a2+y2b2=1\]hasitsfociat$(0,±4)

 

x2a2y2b2=1\]hasitsfociat$(±6,0).

 

Find  l ab l

 

The first equation is an ellipse  with its center at (0, 0) and its major axis along y 

The equation for the focus  is    (0 , 0 ± c)  where  c = ±4

And we have that   a^2 - b^2  = c^2  ⇒  a^2 - b^2  = 16   (1)

 

The second equation is a hyperbola with its center at (0, 0)  and its major axis along x

The equation for the focus is  (0 ± c, 0)  where c = ±6

And we  have that a^2 + b^2  = c^2  ⇒  a^2 + b^2 =  36   (2)

 

Add  (1) and (2)   and we have that

 

2a^2  =  52

a^2  =  26   ⇒    a =  ±√26

 

And  using (2)

 

26 + b^2  = 36

b^2  =  10 ⇒  b = ±√10  

 

So

l ab l  =  l √26 * √10 l  =   l √ 2 * √13 * √2 * √5  l  =    2√65

 

 

cool cool cool

 

 

cool cool cool

 Jul 10, 2019
 #2
avatar+1713 
+6

Sorry, CPhill, just wondering if you knew how to space in latex.

 

If you do not know, you would put a \ and a space at the end of each word in the latex section, hence,

has\ its\ foci\ at

which would equal to:

has its foci at

 

tommarvoloriddle

tommarvoloriddle  Jul 11, 2019
 #3
avatar+130475 
0

THX, tom  for that helpful hint !!!

 

 

cool cool cool

CPhill  Jul 11, 2019
 #4
avatar+1713 
+5

np, cphill!

 

: )

tommarvoloriddle  Jul 11, 2019

2 Online Users