+0  
 
0
588
1
avatar

2sinx+cosx=0

 Nov 5, 2015
 #1
avatar+130536 
+5

2sinx+cosx=0   subtract cosx from both sides

 

2sinx = -cosx       square both sides

 

4sin'^2x   = cos^2x        and we can write cos^2x as  1 - sin^2x

 

4sin^2x = 1 - sin^2x     add sin^2x to both sides

 

5sin^2x   = 1       divide both side by 5

 

sin^2x  = 1/5      take the positive and negative square roots of both sides

 

sinx = plus/minus sqrt(1/ 5)

 

So, taking the sine inverse of both answers, we have

 

sin-1 ( sqrt (1/5) )  = x =   about 26.565 °              and        sin-1 (-sqrt (1/5) )  = x  =   about - 26,565 °

 

We can reject the first solution because the sin and cos are positive at 26.565 °   ......and this would make the original equation false

 

The second solution is correct

 

For more general solutions......here's a graph [ in degrees ]  ......https://www.desmos.com/calculator/cttwh9sjr2

 

One general solution is   x = [ - 26.565 °  + 180n ] °   where n is an integer

 

 

cool cool cool

 Nov 5, 2015

1 Online Users