+0  
 
-1
55
1
avatar+743 

I keep trying this problem but i'm not getting anywhere

 

A sphere is inscribed in a cone with height $3$ and base radius $3$. What is the ratio of the volume of the sphere to the volume of the cone?

 

 Aug 26, 2023
 #1
avatar+129895 
+1

See the following :

 

 

We can find the inradius of  the triangle shown

The triangle is  isosceles with equal sides of  sqrt (3^2 + 3^2)  = sqrt (18)  = 3sqrt (2) and the remaining  side of 6

 

Area of triangle =  (1/2) (6) (3)  = 9

Semiperimeter =   ( 2 * 3 sqrt 2  + 6)   / 2 =  3sqrt (2) + 3

 

Inradius =  Area / semi-perimeter  =   9 / ( 3sqrt (2) + 3)  =  3 / ( sqrt (2) + 1) =  radius of  sphere

 

Volume of sphere / Volume of  cone  =  (4/3) pi * ( 3 / [sqrt (2) + 1])^3 / [ (1/3) pi  (3^2) * 3 ] =

 

4 / [ sqrt (2) + 1 ] ^3   ≈   .284 

 

 

cool cool cool

 Aug 26, 2023

0 Online Users