+0  
 
+1
72
1
avatar+25 

Triangle ABC has vertices A(0, 0), B(0, 3) and C(5, 0). A point P inside the triangle is √10 units from point A and √13 units from point B. How many units is P from point C? Express your answer in simplest radical form.

 

OOPS!!!

CluelesssPersonnn  Jul 12, 2018
edited by CluelesssPersonnn  Jul 12, 2018

Best Answer 

 #1
avatar+20004 
+2

Triangle ABC has vertices A(0, 0), B(0, 3) and C(5, 0).
A point P inside the triangle is v10 units from point A and v13 units from point B.
How many units is P from point C?
Express your answer in simplest radical form.

 

\(\text{Circle at $A$:} \)

\(\begin{array}{|rcll|} \hline (x-x_A)^2 +(y-y_A)^2 &=& r_A^2 \quad & | \quad x_A = 0 \\ && \quad & | \quad y_A = 0 \\ && \quad & | \quad r_A = \sqrt{10} \\ x^2 +y^2 &=& 10 & (1) \\ \hline \end{array} \)

 

\(\text{Circle at $B$:}\)

\(\begin{array}{|rcll|} \hline (x-x_B)^2 +(y-y_B)^2 &=& r_B^2 \quad & | \quad x_B = 0 \\ && \quad & | \quad y_B = 3 \\ && \quad & | \quad r_B = \sqrt{13} \\ x^2 +(y-3)^2 &=& 13 & (2) \\ \hline \end{array}\)

 

\(\text{Point $P$ at $(x_P,y_P)$:}\)

\(\begin{array}{|lrcll|} \hline & x_P^2 +y_P^2 &=& 10 \qquad (3) \quad & | \quad x^2 +y^2 = 10\\ & x_P^2 +(y_P-3)^2 &=& 13 \qquad (4) \quad & | \quad x^2 +(y-3)^2 = 13 \\ \hline (3)-(4): & x_P^2 +y_P^2 - ( x_P^2 +(y_P-3)^2 ) &=& 10-13 \\ & x_P^2 +y_P^2 - x_P^2 - (y_P-3)^2 &=& -3 \\ & y_P^2 - (y_P-3)^2 &=& -3 \\ & y_P^2 - y_P^2 + 6y_P -9 &=& -3 \\ & 6y_P -9 &=& -3 \\ & 6y_P &=& 6 \\ & \mathbf{ y_P } & \mathbf{=}& \mathbf{1} \\\\ \hline & x_P^2 +y_P^2 &=& 10 \quad & | \quad y_P=1 \\ & x_P^2 + 1&=& 10 \\ & x_P^2 &=& 9 \\ & \mathbf{ x_P } & \mathbf{=}& \mathbf{3} \\ \hline \end{array}\)

 

\(\text{Distance $P$ and $C$ :}\)

\(\begin{array}{|rcll|} \hline P(3,1) \\ C(5, 0) \\ \text{Distance} &=& \sqrt{(3-5)^2+(1-0)^2} \\ &=& \sqrt{(-2)^2+1^2} \\ &=& \sqrt{4+1} \\ & \mathbf{=}& \mathbf{\sqrt{5} } \\ \hline \end{array}\)

 

 

laugh

heureka  Jul 12, 2018
 #1
avatar+20004 
+2
Best Answer

Triangle ABC has vertices A(0, 0), B(0, 3) and C(5, 0).
A point P inside the triangle is v10 units from point A and v13 units from point B.
How many units is P from point C?
Express your answer in simplest radical form.

 

\(\text{Circle at $A$:} \)

\(\begin{array}{|rcll|} \hline (x-x_A)^2 +(y-y_A)^2 &=& r_A^2 \quad & | \quad x_A = 0 \\ && \quad & | \quad y_A = 0 \\ && \quad & | \quad r_A = \sqrt{10} \\ x^2 +y^2 &=& 10 & (1) \\ \hline \end{array} \)

 

\(\text{Circle at $B$:}\)

\(\begin{array}{|rcll|} \hline (x-x_B)^2 +(y-y_B)^2 &=& r_B^2 \quad & | \quad x_B = 0 \\ && \quad & | \quad y_B = 3 \\ && \quad & | \quad r_B = \sqrt{13} \\ x^2 +(y-3)^2 &=& 13 & (2) \\ \hline \end{array}\)

 

\(\text{Point $P$ at $(x_P,y_P)$:}\)

\(\begin{array}{|lrcll|} \hline & x_P^2 +y_P^2 &=& 10 \qquad (3) \quad & | \quad x^2 +y^2 = 10\\ & x_P^2 +(y_P-3)^2 &=& 13 \qquad (4) \quad & | \quad x^2 +(y-3)^2 = 13 \\ \hline (3)-(4): & x_P^2 +y_P^2 - ( x_P^2 +(y_P-3)^2 ) &=& 10-13 \\ & x_P^2 +y_P^2 - x_P^2 - (y_P-3)^2 &=& -3 \\ & y_P^2 - (y_P-3)^2 &=& -3 \\ & y_P^2 - y_P^2 + 6y_P -9 &=& -3 \\ & 6y_P -9 &=& -3 \\ & 6y_P &=& 6 \\ & \mathbf{ y_P } & \mathbf{=}& \mathbf{1} \\\\ \hline & x_P^2 +y_P^2 &=& 10 \quad & | \quad y_P=1 \\ & x_P^2 + 1&=& 10 \\ & x_P^2 &=& 9 \\ & \mathbf{ x_P } & \mathbf{=}& \mathbf{3} \\ \hline \end{array}\)

 

\(\text{Distance $P$ and $C$ :}\)

\(\begin{array}{|rcll|} \hline P(3,1) \\ C(5, 0) \\ \text{Distance} &=& \sqrt{(3-5)^2+(1-0)^2} \\ &=& \sqrt{(-2)^2+1^2} \\ &=& \sqrt{4+1} \\ & \mathbf{=}& \mathbf{\sqrt{5} } \\ \hline \end{array}\)

 

 

laugh

heureka  Jul 12, 2018

39 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.