If $-5\leq a \leq -1$ and $1 \leq b \leq 3$, what is the least possible value of $\displaystyle\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{b}-\frac{1}{a}\right) $? Express your answer as a common fraction.
The smallest possible value is 0, when a = -1 and b = 1.