We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website.
Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see
cookie policy and privacy policy.
DECLINE COOKIES

Given that \(x\) is a positive integer less than 100, how many solutions does the congruence \(x + 13 \equiv 55 \pmod{34}\) have?

Guest Dec 18, 2018

#1**+8 **

**Given that \(\large{x}\) is a positive integer less than 100, how many solutions does the congruence have? \(\large{x + 13 \equiv 55 \pmod{34}}\)**

\(\begin{array}{|rcll|} \hline x + 13 &\equiv& 55 \pmod{34} \\ x + 13 &\equiv& 55-34 \pmod{34} \\ x + 13 &\equiv& 21 \pmod{34} \quad & | \quad - 13 \\ x &\equiv& 21-13 \pmod{34} \\ x &\equiv& 8 \pmod{34} \\ \mathbf{x} & \mathbf{=} & \mathbf{8 + n \cdot 34}, ~ n \in \mathbb{N} \\ \hline \end{array} \)

\(\begin{array}{|c|l|c|} \hline n, ~ n \in \mathbb{N} & \mathbf{x = 8 + n \cdot 34} & ~ x>0,~ x<100 \\ \hline 0 & x = 8+0\cdot 34 \\ & x= 8 & \checkmark \\ \hline 1 & x = 8+1\cdot 34 \\ & x= 42 & \checkmark \\ \hline 2 & x = 8+2\cdot34 \\ & x = 76 & \checkmark \\ \hline 3 & x = 8+3\cdot 34 \\ & x = 110 & x> 100 \\ \hline \ldots & & x> 100 \\ \hline \end{array}\)

The congruence has three solutions: \(\mathbf{x = 8}\) and \(\mathbf{x = 42}\) and \(\mathbf{x = 76}\)

heureka Dec 18, 2018