2x ( x + 10 ) = -50 | :2
x ( x + 10 ) = -25
x^2 + 10x = -25 | + 25
x^2 + 10x + 25 = 0
Use quadratic formula:
-b ± sqrt ( b^2 - 4ac ) -10 ± sqrt ( 10^2 - 4 * 1 * 25 ) -10 ± sqrt ( 100 - 100 ) -10 ± sqrt ( 0 ) -10
------------------------------ = --------------------------------------- = ------------------------------ = --------------------- = ----------- = -5 ± 0, so:
2a 2 2 2 2
x_1 = -5
x_2 = 5
( - 5 ) + 5 = 0.
The answer is 0.
2x(x + 10) = -50 expand and simplify to
2x^2 + 20x + 50 = 0 or
x^2 + 10x + 25 =0
(x+5)(x+5) = 0 shows only one root x = - 5 (a 'double root')
sum = -5
2x(x + 10) = -50
2x^2 + 20x = -50
2x^2 + 20x + 50 = 0
Using VIeta's formulas, the sum of roots of the quadratic ax^2 + bx + c = 0 is -b/a.
-b/a = -20/2 = -10.
(As ElectricPavlov has solved this question, the two roots are -5 and -5, which sum to -10 as expected.)
\(2x(x + 10) = -50\)
\(2x^2+20x=-50\)
\(2x^2+20x+50=-50+50\)
\(2x^2+20x+50=0\)
\(x_{1,\:2}=\frac{-20\pm \sqrt{20^2-4\cdot \:2\cdot \:50}}{2\cdot \:2}\)
\(x_{1,\:2}=\frac{-20\pm \sqrt{0}}{2\cdot \:2}\)
\(x=\frac{-20}{2\cdot \:2}\)
\(x=-5\)
so the value is -5
so -5!
hope this helps!,
XxmathguyxX