We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
99
1
avatar

Let  X, Y and Z be points such that \(\frac{XZ}{XY} = \frac{ZY}{XY} = \frac{1}{2}\). If Y = (1, 7), Z = (-1, -7), then what is the sum of the coordinates of X?

 Feb 7, 2019
 #1
avatar+101870 
+1

We must have this orientation :

 

X       Z       Y

 

So...if XZ/XY = 1/2     and ZY/XY = 1/2

 

Then Z must be the midpoint of XY......so we have that

 

[ 1 + x coordinate of X ] / 2  =  x coordinate of Z

[ 1 +  xX] / 2 = -1       multiply both sides by 2

1 + xX  = -2       subtract 1 from both sides

xX = -3

 

Likewise

 

[ 1 + y coordinate of X ] / 2 =  y coordinate of Z

[ 1 + yX ] / 2 =  -7     multiply both sides by 2

1 + yX  = -14    subtract 1 from both sides

yX = - 15

 

So

 

X  = ( -3, -15)

 

And the sum of these  =   -18

 

 

cool cool cool

 Feb 7, 2019

5 Online Users

avatar