We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
106
3
avatar

a) Compute x+y and \(\sqrt{x^2+y^2}\) when x=5 and  y=12

b) When is

\(x+y=\sqrt{x^2+y^2}?\)
When is

\(x+y\neq\sqrt{x^2+y^2}\)
 

 Mar 15, 2019
 #1
avatar+4295 
+5

(a) If you know the Pythagorean triple (5, 12, 13), the answer is 13. Thus, \(\sqrt{25+144}=\sqrt{169}=\boxed{13}.\)

.
 Mar 15, 2019
 #2
avatar+234 
+2

b. the first part is one, the second part is any number aside from one.

 Mar 15, 2019
 #3
avatar+101739 
+1

a) x + y  = 5 + 12 = 17

Tertre's answer for  sqrt (x^2 + y^2)  is good

 

b)    x + y =  sqrt (x^2 + y^2)        square both sides

 

x^2 + 2xy + y^2  = x^2 + y^2

 

2xy  = 0

 

xy = 0

 

So....this is true when either x or y   (or both)   = 0

 

c)     this will not be true   when    xy   ≠  0

 

 

cool  cool  cool

 Mar 15, 2019

14 Online Users

avatar
avatar