Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+3
1533
7
avatar+752 

sec^6 (x)- tan^6(x)= 1+3tan^2(x)+3tan^4(x)

 Jul 26, 2014

Best Answer 

 #3
avatar+118696 
+16

[sec6(x)][tan6(x)]=1+[3tan2(x)]+[3tan4(x)](1cos6x)[(sin6xcos6x)]=1+[3(sin2xcos2x)]+[3(sin4xcos4x)]cos6(x)((1cos6x)[(sin6xcos6x)])=cos6(x)(1+[3(sin2xcos2x)]+[3(sin4xcos4x)])(1)[sin6x]=cos6(x)+[3(sin2xcos4(x))]+[3(sin4xcos2(x))]1[(sin2x)3]=cos6(x)+[3(sin2x)cos4(x)]+[3((sin2x)2)cos2(x)]1[(1cos2x)3]=cos6(x)+[3(1cos2x)cos4(x)]+[3((1cos2x)2)cos2(x)]1[(cos2x)3+3(cos2x)2+3(cos2x)+1]=cos6(x)+[3(1cos2x)cos4(x)]+[3((cos2x)22cos2x+1)cos2(x)]1[(cos6x)+3(cos4x)3cos2x+1]=cos6(x)+[3(cos4(x)cos6(x))]+[3((cos6x)2cos4x+cos2(x))]1+cos6x3cos4x+3cos2x1=cos6(x)+[3cos4(x)3cos6(x)]+[3cos6x6cos4x+3cos2(x)]cos6x3cos4x+3cos2x=cos6(x)+3cos4(x)3cos6(x)+3cos6x6cos4x+3cos2(x)3cos4x=3cos4(x)6cos4x3cos4x=3cos4xLHS=RHS

 

This is true for all values of x

.
 Jul 26, 2014
 #1
avatar
+3

sec^6(x)-tan^6(x)-3*tan^4(x)-3*tan^2(x)-1=0

 Jul 26, 2014
 #2
avatar+118696 
+8

I just did a HUGE page of LaTex on this and lost the whole blink'n lot.

Bummer!!!!!!

ok When I did it on paper I got down to cosx=0

When I did it straight onto the forum I got that it was always true x=anything

I'll redo it a little later.  This is hugely irritating.

Anyway the way I went about it was to change everything to sin and cos

then mult by cos^6x

Then get rid of all the sines

The collect like terms 

and wallah! it will all fall out.

 Jul 26, 2014
 #3
avatar+118696 
+16
Best Answer

[sec6(x)][tan6(x)]=1+[3tan2(x)]+[3tan4(x)](1cos6x)[(sin6xcos6x)]=1+[3(sin2xcos2x)]+[3(sin4xcos4x)]cos6(x)((1cos6x)[(sin6xcos6x)])=cos6(x)(1+[3(sin2xcos2x)]+[3(sin4xcos4x)])(1)[sin6x]=cos6(x)+[3(sin2xcos4(x))]+[3(sin4xcos2(x))]1[(sin2x)3]=cos6(x)+[3(sin2x)cos4(x)]+[3((sin2x)2)cos2(x)]1[(1cos2x)3]=cos6(x)+[3(1cos2x)cos4(x)]+[3((1cos2x)2)cos2(x)]1[(cos2x)3+3(cos2x)2+3(cos2x)+1]=cos6(x)+[3(1cos2x)cos4(x)]+[3((cos2x)22cos2x+1)cos2(x)]1[(cos6x)+3(cos4x)3cos2x+1]=cos6(x)+[3(cos4(x)cos6(x))]+[3((cos6x)2cos4x+cos2(x))]1+cos6x3cos4x+3cos2x1=cos6(x)+[3cos4(x)3cos6(x)]+[3cos6x6cos4x+3cos2(x)]cos6x3cos4x+3cos2x=cos6(x)+3cos4(x)3cos6(x)+3cos6x6cos4x+3cos2(x)3cos4x=3cos4(x)6cos4x3cos4x=3cos4xLHS=RHS

 

This is true for all values of x

Melody Jul 26, 2014
 #4
avatar+33654 
+13

I think the idea is to prove that the LHS (left-hand side) equals the RHS (right-hand side).

LHS = \sec^6 x - \tan^6 xRHS = 1+3\tan^2 x +3\tan^4 xDivide$sin2x+cos2x=1$throughby$cos2x$toget$tan2x+1=sec2x$(rememberingthat$secx=1/cosx$)So$sec6x=(sec2x)3=(tan2x+1)3=tan6x+3tan4x+3tan2x+1$ThereforeLHS = \tan^6 x +3\tan^4 x + 3\tan^2 x + 1 - \tan^6 x = 3\tan^4 x + 3\tan^2 x + 1 = RHSJobdone!

 

I see Melody beat me to it!

 Jul 26, 2014
 #5
avatar+118696 
+8

Yours looks a lot shorter than mine Alan  

 Jul 26, 2014
 #6
avatar+33654 
+13

No harm in having more than one solution though!

 Jul 26, 2014
 #7
avatar+130466 
+14

Note that sec6x can be written as   [sec2x]3 = [(1 + tan2x)]3

And using the binomial theorem, we have.........

[(1 + tan2x)]3  = [tan2x]3 + 3[tan2x]2 + 3[tan2x] + 1    ...   therefore  ....

sec6x - tan6x =

 [tan2x]3 + 3[tan2x]2 + 3[tan2x] + 1  - tan6x   =

 tan6x  + 3[tan2x]2 + 3[tan2x] + 1 - tan6x   =

3[tan4x] + 3[tan2x] + 1   = which is the same thing as the RHS.....

 

  

 Jul 26, 2014

1 Online Users

avatar