[sec6(x)]−[tan6(x)]=1+[3tan2(x)]+[3tan4(x)](1cos6x)−[(sin6xcos6x)]=1+[3(sin2xcos2x)]+[3(sin4xcos4x)]cos6(x)((1cos6x)−[(sin6xcos6x)])=cos6(x)(1+[3(sin2xcos2x)]+[3(sin4xcos4x)])(1)−[sin6x]=cos6(x)+[3(sin2xcos4(x))]+[3(sin4xcos2(x))]1−[(sin2x)3]=cos6(x)+[3(sin2x)cos4(x)]+[3((sin2x)2)cos2(x)]1−[(1−cos2x)3]=cos6(x)+[3(1−cos2x)cos4(x)]+[3((1−cos2x)2)cos2(x)]1−[(−cos2x)3+3(−cos2x)2+3(−cos2x)+1]=cos6(x)+[3(1−cos2x)cos4(x)]+[3((cos2x)2−2cos2x+1)cos2(x)]1−[(−cos6x)+3(cos4x)−3cos2x+1]=cos6(x)+[3(cos4(x)−cos6(x))]+[3((cos6x)−2cos4x+cos2(x))]1+cos6x−3cos4x+3cos2x−1=cos6(x)+[3cos4(x)−3cos6(x)]+[3cos6x−6cos4x+3cos2(x)]cos6x−3cos4x+3cos2x=cos6(x)+3cos4(x)−3cos6(x)+3cos6x−6cos4x+3cos2(x)−3cos4x=−3cos4(x)−6cos4x−3cos4x=−3cos4xLHS=RHS
This is true for all values of x
.I just did a HUGE page of LaTex on this and lost the whole blink'n lot.
Bummer!!!!!!
ok When I did it on paper I got down to cosx=0
When I did it straight onto the forum I got that it was always true x=anything
I'll redo it a little later. This is hugely irritating.
Anyway the way I went about it was to change everything to sin and cos
then mult by cos^6x
Then get rid of all the sines
The collect like terms
and wallah! it will all fall out.
[sec6(x)]−[tan6(x)]=1+[3tan2(x)]+[3tan4(x)](1cos6x)−[(sin6xcos6x)]=1+[3(sin2xcos2x)]+[3(sin4xcos4x)]cos6(x)((1cos6x)−[(sin6xcos6x)])=cos6(x)(1+[3(sin2xcos2x)]+[3(sin4xcos4x)])(1)−[sin6x]=cos6(x)+[3(sin2xcos4(x))]+[3(sin4xcos2(x))]1−[(sin2x)3]=cos6(x)+[3(sin2x)cos4(x)]+[3((sin2x)2)cos2(x)]1−[(1−cos2x)3]=cos6(x)+[3(1−cos2x)cos4(x)]+[3((1−cos2x)2)cos2(x)]1−[(−cos2x)3+3(−cos2x)2+3(−cos2x)+1]=cos6(x)+[3(1−cos2x)cos4(x)]+[3((cos2x)2−2cos2x+1)cos2(x)]1−[(−cos6x)+3(cos4x)−3cos2x+1]=cos6(x)+[3(cos4(x)−cos6(x))]+[3((cos6x)−2cos4x+cos2(x))]1+cos6x−3cos4x+3cos2x−1=cos6(x)+[3cos4(x)−3cos6(x)]+[3cos6x−6cos4x+3cos2(x)]cos6x−3cos4x+3cos2x=cos6(x)+3cos4(x)−3cos6(x)+3cos6x−6cos4x+3cos2(x)−3cos4x=−3cos4(x)−6cos4x−3cos4x=−3cos4xLHS=RHS
This is true for all values of x
I think the idea is to prove that the LHS (left-hand side) equals the RHS (right-hand side).
LHS = \sec^6 x - \tan^6 xRHS = 1+3\tan^2 x +3\tan^4 xDivide$sin2x+cos2x=1$throughby$cos2x$toget$tan2x+1=sec2x$(rememberingthat$secx=1/cosx$)So$sec6x=(sec2x)3=(tan2x+1)3=tan6x+3tan4x+3tan2x+1$ThereforeLHS = \tan^6 x +3\tan^4 x + 3\tan^2 x + 1 - \tan^6 x = 3\tan^4 x + 3\tan^2 x + 1 = RHSJobdone!
I see Melody beat me to it!
Note that sec6x can be written as [sec2x]3 = [(1 + tan2x)]3
And using the binomial theorem, we have.........
[(1 + tan2x)]3 = [tan2x]3 + 3[tan2x]2 + 3[tan2x] + 1 ... therefore ....
sec6x - tan6x =
[tan2x]3 + 3[tan2x]2 + 3[tan2x] + 1 - tan6x =
tan6x + 3[tan2x]2 + 3[tan2x] + 1 - tan6x =
3[tan4x] + 3[tan2x] + 1 = which is the same thing as the RHS.....