Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1182
3
avatar

So we are doing parametric equations in class, and there are various fomulas for finding a number of things out about a parabola including the point of intersection of normals, of tangents, the gradients and equations of normals and tangents, the equation of a chord etc...

 

So I was wondering if there was a formula for the point(s) of intersection between a parabola and a normal from a point on the parabola. It makes sense that there should be, and I can solve it by just simultaneously solving the equations of the normal and parabola, but my varied attempts at generating a fomula have failed. 

 

Here is what my formula ended up looking like, without any simplifications :

px^2 - 4ax - 4a^2p*(2 + p^2) = 0

 

But it didn't work.

 

Thanks in advance for any help :)

 Mar 9, 2016

Best Answer 

 #1
avatar+33654 
+5

Are you looking for something like the following?

 

parabola 1

parabola 2

.

 Mar 9, 2016
 #1
avatar+33654 
+5
Best Answer

Are you looking for something like the following?

 

parabola 1

parabola 2

.

Alan Mar 9, 2016
 #2
avatar+26396 
+5

So I was wondering if there was a formula for the point(s) of intersection between a parabola and a normal from a point on the parabola

 

1. Parabola: f(x)=y=ax2+bx+c

 

2. Normal from a point on the parabola:  n(x)=y=1f(x)(xxa)+f(xa)

 

3. f(xa)=2axa+bya=f(xa)=ax2a+bxa+c

 

4. Intersection between a parabola and a normal:

ax2+bx+c=1f(x)(xxa)+ya|f(xa)ax2f(xa)+bf(xa)+cf(xa)=xax+yaf(xa)x2[af(xa)]+x[1+bf(xa)]+f(xa)(cya)xa=0

 

 x1,2=[ 1+bf(xa) ]±1+[ f(xa) ]2[ 2+b24a(cya) ]2af(xa)ya=ax2a+bxa+cf(xa)=2axa+b 

 

5. Example:

a=12b=0c=0xa=4

Parabola: f(x)=12x2

f(xa)=f(4)=ya=1242=8f(xa)=f(4)=2124+0=4

 

x1,2=[ 1+0 ]±1+[ 4 ]2[ 2+02412(08) ]2124x1,2=1±1+16[ 2412(8) ]4x1,2=1±1+16[ 2+16 ]4x1,2=1±1+16[ 18 ]4x1,2=1±174x1=1+174x1=xa=4x2=1174x2=xb=4.5y2=yb=12x2byb=12(4.5)2yb=10.125

 

 

laugh

 Mar 9, 2016
edited by heureka  Mar 9, 2016
edited by heureka  Mar 9, 2016
 #3
avatar+26396 
0

continuation

 x1,2=[ 1+bf(xa) ]±1+[ f(xa) ]2[ 2+b24a(cya) ]2af(xa)ya=ax2a+bxa+cf(xa)=2axa+bx1+x2=[ 1+bf(xa) ]+1+[ f(xa) ]2[ 2+b24a(cya) ]2af(xa)+[ 1+bf(xa) ]1+[ f(xa) ]2[ 2+b24a(cya) ]2af(xa)x1+x2=[ 1+bf(xa) ]2af(xa)+[ 1+bf(xa) ]2af(xa)x1+x2=2[ 1+bf(xa) ]2af(xa)x1+x2=[ 1+bf(xa) ]af(xa)x1+x2=1a[1f(xa)+b]|f(xa)=2axa+bx1+x2=1a(12axa+b+b)|x1=xax2=xbxa+xb=1a(12axa+b+b)xb=xa1a(12axa+b+b) 

 

conclusion

 Parabola y=ax2+bx+c and we have a,b,c and xaxb=xa1a(12axa+b+b)yb=ax2b+bxb+c 

 

Example:

Parabola y=12x2a=12b=0c=0xa=4xb=4112(12124+0+0)xb=4112(14)xb=424xb=412xb=4.5yb=12(4.5)2+0(4.5)+0yb=10.125

 

laugh

heureka  Mar 10, 2016

2 Online Users

avatar