+0  
 
-1
34
1
avatar+508 

Find the constant coefficient when the polynomial $\(3(x - 4) + 2(x^2 - x + 7) - 5(x - 1)\)$ is simplified.

Lightning  Jul 27, 2018
 #1
avatar
0

Simplify the following:
3 (x - 4) + 2 (x^2 - x + 7) - 5 (x - 1)

3 (x - 4) = 3 x - 12:
3 x - 12 + 2 (x^2 - x + 7) - 5 (x - 1)

2 (x^2 - x + 7) = 2 x^2 - 2 x + 14:
-12 + 3 x + 2 x^2 - 2 x + 14 - 5 (x - 1)

-5 (x - 1) = 5 - 5 x:
2 x^2 + 3 x - 2 x + 5 - 5 x - 12 + 14

Grouping like terms, 2 x^2 + 3 x - 2 x - 5 x - 12 + 5 + 14 = 2 x^2 + (3 x - 2 x - 5 x) + (-12 + 14 + 5):
2 x^2 + (3 x - 2 x - 5 x) + (-12 + 14 + 5)

3 x - 2 x - 5 x = -4 x:
2 x^2 + -4 x + (-12 + 14 + 5)

-12 + 14 + 5 = 7:

 2x^2 - 4x + 7 - The "Constant Coefficient" is 7.

Guest Jul 27, 2018

17 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.