If \(f(x)\) is a monic quartic polynomial such that \(f(-1)=-1\) , \(f(2)=-4\), \(f(3)=-9\), and \(f(4)=-16\), find \(f(1)\).
f(x) = x^4 - 24/5*x^3 + 16/5*x^2 + 26/5*x - 24/5, so f(1) = -1/5.