We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
-1
208
2
avatar+1038 

The product of $3t^2+5t+a$ and $4t^2+bt-2$ is $12t^4+26t^3-8t^2-16t+6$. What is $a+b$?

 Jul 24, 2018
 #1
avatar
+1

PLEASE post  readable questions.

 Jul 24, 2018
 #2
avatar+21977 
+1

The product of $3t^2+5t+a$ and $4t^2+bt-2$ is $12t^4+26t^3-8t^2-16t+6$. What is $a+b$?

 

\(\begin{array}{|rcll|} \hline && (3t^2+5t+a)(4t^2+bt-2) \\ &=& 12t^4+3bt^3-6t^2+20t^3+5bt^2-10t+4at^2+abt-2a \\ &=& 12t^4+(3b+20)t^3 +(-6+5b+4a)t^2 +(-10+ab)t -2a \\ \hline \text{compare}&=&12t^4+26t^3-8t^2-16t+6 \\\\ -2a &=& 6 \quad | \quad : (-2) \\ \mathbf{a} & \mathbf{=} & \mathbf{-3} \\\\ 3b+20 &=& 26 \\ 3b &=& 6 \\ \mathbf{b} & \mathbf{=} & \mathbf{2} \\\\ a+b &=& -3+2 \\ \mathbf{a+b} & \mathbf{=} & \mathbf{-1} \\ \hline \end{array} \)

 

 

laugh

 Jul 25, 2018

9 Online Users

avatar