+0  
 
-1
101
2
avatar+753 

The product of $3t^2+5t+a$ and $4t^2+bt-2$ is $12t^4+26t^3-8t^2-16t+6$. What is $a+b$?

Lightning  Jul 24, 2018
 #1
avatar
+1

PLEASE post  readable questions.

Guest Jul 24, 2018
 #2
avatar+20033 
+1

The product of $3t^2+5t+a$ and $4t^2+bt-2$ is $12t^4+26t^3-8t^2-16t+6$. What is $a+b$?

 

\(\begin{array}{|rcll|} \hline && (3t^2+5t+a)(4t^2+bt-2) \\ &=& 12t^4+3bt^3-6t^2+20t^3+5bt^2-10t+4at^2+abt-2a \\ &=& 12t^4+(3b+20)t^3 +(-6+5b+4a)t^2 +(-10+ab)t -2a \\ \hline \text{compare}&=&12t^4+26t^3-8t^2-16t+6 \\\\ -2a &=& 6 \quad | \quad : (-2) \\ \mathbf{a} & \mathbf{=} & \mathbf{-3} \\\\ 3b+20 &=& 26 \\ 3b &=& 6 \\ \mathbf{b} & \mathbf{=} & \mathbf{2} \\\\ a+b &=& -3+2 \\ \mathbf{a+b} & \mathbf{=} & \mathbf{-1} \\ \hline \end{array} \)

 

 

laugh

heureka  Jul 25, 2018

33 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.