Find the constant t such that
(5x2−6x+7)(4x2+tx+10)=20x4−54x3+114x2−102x+70.
(5x2 - 6x + 7)(4x2 + tx + 10)
= 20x4 + 5tx3 + 50 x2 - 24x3 - 6tx2 - 60x + 28x2 + 7tx + 70
= 20x4 + (5t - 24)x3 + (78 - 6t)x2 + (7t - 60)x + 70
-54x3 = (5t - 24)x3
t = -6
114x2 = (78 - 6t)x2
t = -6
-102x = (7t - 60)x
t = -6