+0  
 
0
73
1
avatar

P(x) = 2x^4 - x^3 + 2x^2 - k where k is an unknown integer. P(x) divided by (x+1) has a remainder of 2. What is the value of k?

 

 Jul 10, 2020
 #1
avatar+10040 
0

P(x) = 2x^4 - x^3 + 2x^2 - k where k is an unknown integer. P(x) divided by (x+1) has a remainder of 2. What is the value of k?

 

Hello Guest!

 

P (x) = 2x ^ 4 - x ^ 3 + 2x ^ 2 - k wobei k eine unbekannte ganze Zahl ist. P (x) geteilt durch (x + 1) hat einen Rest von 2. Was ist der Wert von k?

 

 

\(P_v(x) =\frac{ 2x^4 - x^3 + 2x^2 - k }{x+1}\)

 \( 2x^4 - x^3 + 2x^2 - k :{\color{blue}(x+1)}=\)\(2x^3-3x^2+4x-\frac{k}{x}-\ ...\)

 \(\underline{2x^4+2x^3}\)

        \(-3x^3-2x^2\)

        \(\underline{-3x^3-3x^2}\)

                       \(5x^2-k\)

                      \(\underline{5x^2+4x}\)

                                \(-k-4x\)

 \(\large\frac{{\color{blue}2}-k-4x}{x+1}=\color{blue}\mathbb Z\)

will be added.

laugh

 Jul 10, 2020

17 Online Users

avatar