Processing math: 100%
 
+0  
 
0
262
1
avatar

The polynomial f(x) has degree 3.  If f(-1) = 15, f(0) = 0, f(1) = 0, and f(2) = 12, then what are the x-intercepts of the graph of f?

 Jun 30, 2022

Best Answer 

 #1
avatar+2668 
0

Let the function be in the form f(x)=ax3+bx2+cx+d

 

From f(0)=0, we know that d=0

 

From the remaining 3, we can form the system: 

 

a+bc=15                           (i)

a+b+c=0                                 (ii)

8a+4b+2c=12                        (iii)

 

Adding (i) and (ii) gives us 2b=15, meaning b=7.5

 

Substituting this into (iii) gives us: 8a+30+2c=12, which means 8a+2c=18

 

Substituting this into (ii) gives us: a+c=7.5

 

Solving this new system, we find that a=0.5 and c=7

 

This means that the polynomial is f(x)=0.5x3+7.5x27x

 

Now, recall the sum of the roots, by Vieta's, is ba=15

 

Because the polynomial is of degree 3, we know that there must be 3 real roots. 

 

But, recall that we know 2 of the roots, (0 and 1), so the remaining root is 151=14

 

Thus, the x-intercepts are 0,1,14

 Jun 30, 2022
 #1
avatar+2668 
0
Best Answer

Let the function be in the form f(x)=ax3+bx2+cx+d

 

From f(0)=0, we know that d=0

 

From the remaining 3, we can form the system: 

 

a+bc=15                           (i)

a+b+c=0                                 (ii)

8a+4b+2c=12                        (iii)

 

Adding (i) and (ii) gives us 2b=15, meaning b=7.5

 

Substituting this into (iii) gives us: 8a+30+2c=12, which means 8a+2c=18

 

Substituting this into (ii) gives us: a+c=7.5

 

Solving this new system, we find that a=0.5 and c=7

 

This means that the polynomial is f(x)=0.5x3+7.5x27x

 

Now, recall the sum of the roots, by Vieta's, is ba=15

 

Because the polynomial is of degree 3, we know that there must be 3 real roots. 

 

But, recall that we know 2 of the roots, (0 and 1), so the remaining root is 151=14

 

Thus, the x-intercepts are 0,1,14

BuilderBoi Jun 30, 2022

2 Online Users

avatar