1. Two circles with centres N and S and radii a and c (where a < c) respectively touch externally at P. ABC and ADE are common tangents to the two circles.
Prove that A, N and P are collinear. 


2. Consider the diagram below: 

MN is a chord of fixed length in a circle; Q is a point on the major arc MN. The bisectors of MNQ and NMQ meet the circle at A and B respectively. Prove that the distance between A and B is constant even when Q moves.

Yousif.m  May 17, 2018

Consider these rules to answer this question. 

Guest May 17, 2018

14 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.