+0  
 
0
638
1
avatar

Consider the Power Series:

 

\[ \sum_{n=0}^\infty \frac{n^3 x^{2n}}{5^n}.\]

 

Determine the radius of convergence R.

 Nov 23, 2014

Best Answer 

 #1
avatar+130511 
+5

Using the Ratio Test ( where abs = absolute value), we have

L = lim n →∞   abs [((n + 1)3 x2(n+1) ) / 5n+1] * [ 5n / (n3 * x2n) ]   

L = lim n →∞   abs [[ (n+1)3 x2 ] / [5 n3]]

L =(1/5) (x2 ) *  lim n →∞  [ (n+1)3] /  n3

Note that  lim n →∞   [ (n+1)3] /  n3 ]  = 1      ......so we have

L = (1/5) (x2 )

So if 

(1/5)(x2) < 1     the series converges  ....  and if (1/5)(x2) > 1 the series diverges

Put another way ..... if

(x2) < 5     the series converges  ....  and if (x2) > 5 the series diverges

However....the radius of convergence requires an exponent of 1 on the"x".....so we have

√(x2) < √5   →  abs (x) < √5     and   √(x2) > √5   →  abs (x) > √5 

So the radius of convergence is  R = √5

 

I believe this is correct......but it has been awhile since I've done this.........if anyone sees any mistakes.....feel free to provide corrections  !!!

 

 

 Nov 23, 2014
 #1
avatar+130511 
+5
Best Answer

Using the Ratio Test ( where abs = absolute value), we have

L = lim n →∞   abs [((n + 1)3 x2(n+1) ) / 5n+1] * [ 5n / (n3 * x2n) ]   

L = lim n →∞   abs [[ (n+1)3 x2 ] / [5 n3]]

L =(1/5) (x2 ) *  lim n →∞  [ (n+1)3] /  n3

Note that  lim n →∞   [ (n+1)3] /  n3 ]  = 1      ......so we have

L = (1/5) (x2 )

So if 

(1/5)(x2) < 1     the series converges  ....  and if (1/5)(x2) > 1 the series diverges

Put another way ..... if

(x2) < 5     the series converges  ....  and if (x2) > 5 the series diverges

However....the radius of convergence requires an exponent of 1 on the"x".....so we have

√(x2) < √5   →  abs (x) < √5     and   √(x2) > √5   →  abs (x) > √5 

So the radius of convergence is  R = √5

 

I believe this is correct......but it has been awhile since I've done this.........if anyone sees any mistakes.....feel free to provide corrections  !!!

 

 

CPhill Nov 23, 2014

2 Online Users