Processing math: 100%
 
+0  
 
0
31
1
avatar+68 

Let u and v be vectors such that ||u||=3 and ||v||=2 such that the angle between u and v when placed tail to tail is 60 degrees.

Let A be a matrix such that row_1(A)=u and row_2(A)=v.
Then what are Au, Av  in that order? (Your answers should be numerical.)

 May 14, 2024

Best Answer 

 #1
avatar+9675 
+1

Let , denote the inner product. Then 

u,vuv=cos60=12u,v=322=3

 

A=(uTvT)Au=(uTvT)u=(u,uv,u)=(u2u,v)=(93)

 

Similarly we have

Av=(u,vv2)=(34)

 

If this is not the notation you are used to, u,v is just uv.

 May 14, 2024
 #1
avatar+9675 
+1
Best Answer

Let , denote the inner product. Then 

u,vuv=cos60=12u,v=322=3

 

A=(uTvT)Au=(uTvT)u=(u,uv,u)=(u2u,v)=(93)

 

Similarly we have

Av=(u,vv2)=(34)

 

If this is not the notation you are used to, u,v is just uv.

MaxWong May 14, 2024

0 Online Users