+0  
 
0
328
2
avatar

X3Y5 - XY4 + X2Y2 

divided by XY

Guest Jul 4, 2017

Best Answer 

 #1
avatar+7324 
+3

\(\frac{x^3y^5-xy^4+x^2y^2}{xy}\\~\\ =\frac{x^3y^5}{xy}-\frac{xy^4}{xy}+\frac{x^2y^2}{xy} \\~\\ =\frac{x\,\cdot\,x\,\cdot\,x\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y}{x\,\cdot\,y}-\frac{x\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y}{x\,\cdot\,y}+\frac{x\,\cdot\,x\,\cdot\,y\,\cdot\,y}{x\,\cdot\,y} \\~\\ =\frac{\not{x}\,\cdot\,x\,\cdot\,x\,\cdot\,\not{y}\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y}{\not{x}\,\cdot\,\not{y}}-\frac{\not{x}\,\cdot\,\not{y}\,\cdot\,y\,\cdot\,y\,\cdot\,y}{\not{x}\,\cdot\,\not{y}}+\frac{\not{x}\,\cdot\,x\,\cdot\,\not{y}\,\cdot\,y}{\not{x}\,\cdot\,\not{y}} \\~\\ =x\,\cdot\,x\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y-y\,\cdot\,y\,\cdot\,y+x\,\cdot\,y \\~\\ =x^2y^4-y^3+xy\)

hectictar  Jul 4, 2017
 #1
avatar+7324 
+3
Best Answer

\(\frac{x^3y^5-xy^4+x^2y^2}{xy}\\~\\ =\frac{x^3y^5}{xy}-\frac{xy^4}{xy}+\frac{x^2y^2}{xy} \\~\\ =\frac{x\,\cdot\,x\,\cdot\,x\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y}{x\,\cdot\,y}-\frac{x\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y}{x\,\cdot\,y}+\frac{x\,\cdot\,x\,\cdot\,y\,\cdot\,y}{x\,\cdot\,y} \\~\\ =\frac{\not{x}\,\cdot\,x\,\cdot\,x\,\cdot\,\not{y}\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y}{\not{x}\,\cdot\,\not{y}}-\frac{\not{x}\,\cdot\,\not{y}\,\cdot\,y\,\cdot\,y\,\cdot\,y}{\not{x}\,\cdot\,\not{y}}+\frac{\not{x}\,\cdot\,x\,\cdot\,\not{y}\,\cdot\,y}{\not{x}\,\cdot\,\not{y}} \\~\\ =x\,\cdot\,x\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y-y\,\cdot\,y\,\cdot\,y+x\,\cdot\,y \\~\\ =x^2y^4-y^3+xy\)

hectictar  Jul 4, 2017
 #2
avatar
+2

y(x2y3 - y2 + x)

Guest Jul 5, 2017

11 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.