+0  
 
0
123
2
avatar

X3Y5 - XY4 + X2Y2 

divided by XY

Guest Jul 4, 2017

Best Answer 

 #1
avatar+5256 
+3

\(\frac{x^3y^5-xy^4+x^2y^2}{xy}\\~\\ =\frac{x^3y^5}{xy}-\frac{xy^4}{xy}+\frac{x^2y^2}{xy} \\~\\ =\frac{x\,\cdot\,x\,\cdot\,x\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y}{x\,\cdot\,y}-\frac{x\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y}{x\,\cdot\,y}+\frac{x\,\cdot\,x\,\cdot\,y\,\cdot\,y}{x\,\cdot\,y} \\~\\ =\frac{\not{x}\,\cdot\,x\,\cdot\,x\,\cdot\,\not{y}\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y}{\not{x}\,\cdot\,\not{y}}-\frac{\not{x}\,\cdot\,\not{y}\,\cdot\,y\,\cdot\,y\,\cdot\,y}{\not{x}\,\cdot\,\not{y}}+\frac{\not{x}\,\cdot\,x\,\cdot\,\not{y}\,\cdot\,y}{\not{x}\,\cdot\,\not{y}} \\~\\ =x\,\cdot\,x\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y-y\,\cdot\,y\,\cdot\,y+x\,\cdot\,y \\~\\ =x^2y^4-y^3+xy\)

hectictar  Jul 4, 2017
Sort: 

2+0 Answers

 #1
avatar+5256 
+3
Best Answer

\(\frac{x^3y^5-xy^4+x^2y^2}{xy}\\~\\ =\frac{x^3y^5}{xy}-\frac{xy^4}{xy}+\frac{x^2y^2}{xy} \\~\\ =\frac{x\,\cdot\,x\,\cdot\,x\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y}{x\,\cdot\,y}-\frac{x\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y}{x\,\cdot\,y}+\frac{x\,\cdot\,x\,\cdot\,y\,\cdot\,y}{x\,\cdot\,y} \\~\\ =\frac{\not{x}\,\cdot\,x\,\cdot\,x\,\cdot\,\not{y}\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y}{\not{x}\,\cdot\,\not{y}}-\frac{\not{x}\,\cdot\,\not{y}\,\cdot\,y\,\cdot\,y\,\cdot\,y}{\not{x}\,\cdot\,\not{y}}+\frac{\not{x}\,\cdot\,x\,\cdot\,\not{y}\,\cdot\,y}{\not{x}\,\cdot\,\not{y}} \\~\\ =x\,\cdot\,x\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y-y\,\cdot\,y\,\cdot\,y+x\,\cdot\,y \\~\\ =x^2y^4-y^3+xy\)

hectictar  Jul 4, 2017
 #2
avatar
+2

y(x2y3 - y2 + x)

Guest Jul 5, 2017

7 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details