+0  
 
0
632
8
avatar+77 

Mr. C rolls four dice. What is the probability of getting at most three 6's on top?

 Feb 11, 2017
 #1
avatar+118667 
0

1-[P(4 sixes and 2 non sixes)+(5 sixes and one non six)+P(6 sixes)]

 

\(1-[\binom{6}{4}(\frac{1}{6})^4(\frac{5}{6})^2+\binom{6}{5}(\frac{1}{6})^5(\frac{5}{6})^1+\binom{6}{6}(\frac{1}{6})^6]\\ 1-[15(\frac{1}{6})^4(\frac{5}{6})^2+6(\frac{1}{6})^5(\frac{5}{6})^1+(\frac{1}{6})^6]\\ 1-[15(\frac{5^2}{6^6})+6(\frac{5}{6^6})+(\frac{1}{6^6})]\\ 1-\frac{1}{6^6}[15*25+30+1]\\ 1-\frac{406}{6^6}\\ \)

 

 

1-406/6^6 = 0.9912980109739369

 Feb 11, 2017
 #2
avatar+129849 
+5

"At most" means either   no dice show a "6",  1 die shows a "6",  2 die show a "6"  or  3 die show a "6"

 

No die shows a "6'  = (5/6)^4  = 625/1296

 

I die shows a "6"  =   C(4,1) * (1/6)*(5/6)^3  = 125/324  = 500/1296

 

2 die show a "6"  = C(4,2) * (1/6)^2*(5/6)^2  =  25 /216  = 150 / 1296

 

3 die show a "6"  =  C(4,3) *(1/6)^3 * (5/6)  = 5/324  =  20/ 1296

 

P ( getting at most three 6's on top)  = [ 625 + 500 + 150 + 20 ] / 1296  =

 

0.9992283950617284  ≈   99.99%   [almost a sure thing....!!!!]

 

 

cool cool cool

 Feb 11, 2017
 #3
avatar+118667 
0

I'll have to put my specs on the right side up next time.  I answered for 6 dice.  blush

 Feb 11, 2017
 #4
avatar+129849 
0

Here's a lovely pair.....so stylish...............

 


 

 

cool cool cool

 Feb 11, 2017
 #5
avatar+118667 
0

They are beautiful Chris.  Thanks so much.

I just had to make some modifictations so I  would put them on the correct way.

 

 

Dang!!    I don't have my glasses on ...   how can I read those intructions I just added ?????

 

I think I have it now !!!

 

Melody  Feb 11, 2017
 #6
avatar+129849 
0

Slight correction .....  " 99.99% "   should be   " 99.92% "

 

 

 

cool cool cool

 Feb 11, 2017
 #7
avatar+118667 
0

Would you like to borrow my glasses Chris ???

Melody  Feb 11, 2017
 #8
avatar+129849 
0

No, thanks....I have plenty.....

 

 

cool cool cool cool cool cool cool cool

 

See ????

 Feb 11, 2017

2 Online Users