We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
186
1
avatar

Abdul rolls a fair six-sided die and a fair four-sided die simultaneously. 

Let A be the event that the six-sided die is three and B be the event that Abdul rolls doubles (rolls the same number on each die).

What is P(A or B), the probability that the six-sided die is three or Abdul rolls doubles? _____

 

 

six-sided die ; fair four-sided die ​

1;1 2;1 3;1 4;1 5;1 6;1
1;2 2;2 3;2 4;2 5;2 6;2
1;3 2;3 3;3 4;3 5;3 6;3
1;4 2;4 3;4 4;4 5;4 6;4
 Nov 26, 2018

Best Answer 

 #1
avatar+5172 
+1

\(P[A \cup B] = P[A] + P[B] - P[A \cap B]\\ P[A] = \dfrac 1 6\\ P[B] = \dfrac{4}{24} = \dfrac 1 6 \\ P[A \cap B] =\dfrac{1}{24} \\ P[A\cup B] = \dfrac 1 6 + \dfrac 1 6 - \dfrac {1}{24} = \dfrac {7}{24}\)

.
 Nov 27, 2018
 #1
avatar+5172 
+1
Best Answer

\(P[A \cup B] = P[A] + P[B] - P[A \cap B]\\ P[A] = \dfrac 1 6\\ P[B] = \dfrac{4}{24} = \dfrac 1 6 \\ P[A \cap B] =\dfrac{1}{24} \\ P[A\cup B] = \dfrac 1 6 + \dfrac 1 6 - \dfrac {1}{24} = \dfrac {7}{24}\)

Rom Nov 27, 2018

12 Online Users

avatar
avatar
avatar
avatar