+0  
 
0
166
2
avatar

The sum of a number and its cube, is 68. What is the number?

Guest Feb 23, 2017

Best Answer 

 #2
avatar+19495 
+15

The sum of a number and its cube, is 68.

What is the number?

 

\(\begin{array}{|rcll|} \hline n+n^3 &=& 68 \\ \underbrace{n}_{=4}\cdot \underbrace{(1+n^2)}_{=17} &=& 4\cdot 17 \\\\ 1+n^2&=&17\\ n^2 &=& 16 \\ n &=& 4 \checkmark \\ \hline \end{array}\)

 

The number is 4

 

laugh

heureka  Feb 24, 2017
 #1
avatar
+5

Let the number =N

N + N^3 = 68, solve for N

 

Solve for N:
N^3 + N = 68

Subtract 68 from both sides:
N^3 + N - 68 = 0

The left hand side factors into a product with two terms:
(N - 4) (N^2 + 4 N + 17) = 0

Split into two equations:
N - 4 = 0 or N^2 + 4 N + 17 = 0

Add 4 to both sides:
N = 4 or N^2 + 4 N + 17 = 0

Subtract 17 from both sides:
N = 4 or N^2 + 4 N = -17

Add 4 to both sides:
N = 4 or N^2 + 4 N + 4 = -13

Write the left hand side as a square:
N = 4 or (N + 2)^2 = -13

Take the square root of both sides:
N = 4 or N + 2 = i sqrt(13) or N + 2 = -i sqrt(13)

Subtract 2 from both sides:
N = 4 or N = (0 + 1 i) sqrt(13) - 2 or N + 2 = -i sqrt(13)

Subtract 2 from both sides:
Answer: |N = 4               {or N = (0 + 1 i) sqrt(13) - 2 or N = (0 - i) sqrt(13) - 2} Discard these

Guest Feb 23, 2017
 #2
avatar+19495 
+15
Best Answer

The sum of a number and its cube, is 68.

What is the number?

 

\(\begin{array}{|rcll|} \hline n+n^3 &=& 68 \\ \underbrace{n}_{=4}\cdot \underbrace{(1+n^2)}_{=17} &=& 4\cdot 17 \\\\ 1+n^2&=&17\\ n^2 &=& 16 \\ n &=& 4 \checkmark \\ \hline \end{array}\)

 

The number is 4

 

laugh

heureka  Feb 24, 2017

6 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.