+0  
 
0
89
1
avatar

Given that $\displaystyle {{\left((3!)!\right)!}\over{3!}}= k\cdot n!$, where $k$ and $n$ are positive integers and $n$ is as large as possible, find $k+n$.

Guest Jun 25, 2018
 #1
avatar+20009 
0

Given that $\displaystyle {{\left((3!)!\right)!}\over{3!}}= k\cdot n!$, where $k$ and $n$ are positive integers and

$n$ is as large as possible,

find $k+n$.

\(\begin{array}{|rcll|} \hline \displaystyle {{\left((3!)!\right)!}\over{3!}} &=& k\cdot n! \quad & | \quad 3! = 6 \\ \displaystyle {{\left(6!\right)!}\over{6}} &=& k\cdot n! \quad & | \quad 6! = 720 \\ \displaystyle {{720!}\over{6}} &=& k\cdot n! \\ 720! &=& 6k\cdot n! \quad & | \quad 720! = \underbrace{720}_{=6k}\cdot \underbrace{719}_{=n}! \\\\ 6k &=& 720 \quad & | \quad : 6 \\ \mathbf{k} & \mathbf{=} & \mathbf{120} \\ \mathbf{n} & \mathbf{=} & \mathbf{719} \\ \mathbf{k+n} & \mathbf{=}&\mathbf{ 839 } \\\\ \boxed { \dfrac{ \left((3!)!\right)!}{3!} = 120\cdot 719! } \\ \hline \end{array} \)

 

laugh

heureka  Jun 26, 2018

8 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.