We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
294
1
avatar

Given that $\displaystyle {{\left((3!)!\right)!}\over{3!}}= k\cdot n!$, where $k$ and $n$ are positive integers and $n$ is as large as possible, find $k+n$.

 Jun 25, 2018
 #1
avatar+22358 
0

Given that $\displaystyle {{\left((3!)!\right)!}\over{3!}}= k\cdot n!$, where $k$ and $n$ are positive integers and

$n$ is as large as possible,

find $k+n$.

\(\begin{array}{|rcll|} \hline \displaystyle {{\left((3!)!\right)!}\over{3!}} &=& k\cdot n! \quad & | \quad 3! = 6 \\ \displaystyle {{\left(6!\right)!}\over{6}} &=& k\cdot n! \quad & | \quad 6! = 720 \\ \displaystyle {{720!}\over{6}} &=& k\cdot n! \\ 720! &=& 6k\cdot n! \quad & | \quad 720! = \underbrace{720}_{=6k}\cdot \underbrace{719}_{=n}! \\\\ 6k &=& 720 \quad & | \quad : 6 \\ \mathbf{k} & \mathbf{=} & \mathbf{120} \\ \mathbf{n} & \mathbf{=} & \mathbf{719} \\ \mathbf{k+n} & \mathbf{=}&\mathbf{ 839 } \\\\ \boxed { \dfrac{ \left((3!)!\right)!}{3!} = 120\cdot 719! } \\ \hline \end{array} \)

 

laugh

 Jun 26, 2018

12 Online Users

avatar
avatar
avatar