evaluate the infinite geometric series,
7 to the power of 0 over 100 to the power of 1 + 7 to the power of 1 over 100 to the power of 2 + 7 to the power of 2 over 100 to the power of 3 + ...
as a fraction and find the first 6 digits in its decimal expansion.
[7^0 / 100^1] + [7^1 / 100^2] + [7^2 / 100^3] + ..........and so on. Is it right?
(1 / 100, 7 / 10000, 49 / 1000000, 343 / 100000000, 2401 / 10000000000, 16807 / 1000000000000, 117649 / 100000000000000, 823543 / 10000000000000000, 5764801 / 1000000000000000000, 0.0000000000 0040353607, 0.0000000000 0002824752 49.......and so on
sumfor(n, 0, 10000, (7^n / (100^(n+1))))==0.01075268817 - sum of infinite G. S.
OR:
Sum ==F / [1 - R], where F==First term, R==Common Ratio
Common Ratio ==7 / 100
Sum ==[1 / 100] / [1 - 7/100]==1/100 x 100/93==100 / 9,300 ==0.01075268817 - sum of infinite G. S.