+0

# propability

0
280
2

15 students in 6A are divided into 3 groups for a party , 3 students are organizers , 4 students are planners and 8 students are responsible for the food

Mandy , Helen and Sue are 6A students are responsible for the party

find the probability that thy are in the same group

thanks

Guest Jan 26, 2015

#2
+92225
+10

(3C3 + 4C3 + 8C3)/15C3

$${\frac{\left({\left({\frac{{\mathtt{3}}{!}}{{\mathtt{3}}{!}{\mathtt{\,\times\,}}({\mathtt{3}}{\mathtt{\,-\,}}{\mathtt{3}}){!}}}\right)}{\mathtt{\,\small\textbf+\,}}{\left({\frac{{\mathtt{4}}{!}}{{\mathtt{3}}{!}{\mathtt{\,\times\,}}({\mathtt{4}}{\mathtt{\,-\,}}{\mathtt{3}}){!}}}\right)}{\mathtt{\,\small\textbf+\,}}{\left({\frac{{\mathtt{8}}{!}}{{\mathtt{3}}{!}{\mathtt{\,\times\,}}({\mathtt{8}}{\mathtt{\,-\,}}{\mathtt{3}}){!}}}\right)}\right)}{{\left({\frac{{\mathtt{15}}{!}}{{\mathtt{3}}{!}{\mathtt{\,\times\,}}({\mathtt{15}}{\mathtt{\,-\,}}{\mathtt{3}}){!}}}\right)}}} = {\frac{{\mathtt{61}}}{{\mathtt{455}}}} = {\mathtt{0.134\: \!065\: \!934\: \!065\: \!934\: \!1}}$$

There you go, Alan's answer and my answer look different but they work out the same because the 3! in mine cancels out.

Melody  Jan 27, 2015
Sort:

#1
+26640
+5

This is (nbr of ways of arranging 3 people in a group of 3 + nbr of ways of arranging 3 people in a group of 4 + nbr of ways of arranging 3 people in a group of 8)/(nbr of ways of arranging 3 people in a group of 15):

$${\frac{\left({\left({\frac{{\mathtt{3}}{!}}{({\mathtt{3}}{\mathtt{\,-\,}}{\mathtt{3}}){!}}}\right)}{\mathtt{\,\small\textbf+\,}}{\left({\frac{{\mathtt{4}}{!}}{({\mathtt{4}}{\mathtt{\,-\,}}{\mathtt{3}}){!}}}\right)}{\mathtt{\,\small\textbf+\,}}{\left({\frac{{\mathtt{8}}{!}}{({\mathtt{8}}{\mathtt{\,-\,}}{\mathtt{3}}){!}}}\right)}\right)}{{\left({\frac{{\mathtt{15}}{!}}{({\mathtt{15}}{\mathtt{\,-\,}}{\mathtt{3}}){!}}}\right)}}} = {\frac{{\mathtt{61}}}{{\mathtt{455}}}} = {\mathtt{0.134\: \!065\: \!934\: \!065\: \!934\: \!1}}$$

.

Alan  Jan 26, 2015
#2
+92225
+10

(3C3 + 4C3 + 8C3)/15C3

$${\frac{\left({\left({\frac{{\mathtt{3}}{!}}{{\mathtt{3}}{!}{\mathtt{\,\times\,}}({\mathtt{3}}{\mathtt{\,-\,}}{\mathtt{3}}){!}}}\right)}{\mathtt{\,\small\textbf+\,}}{\left({\frac{{\mathtt{4}}{!}}{{\mathtt{3}}{!}{\mathtt{\,\times\,}}({\mathtt{4}}{\mathtt{\,-\,}}{\mathtt{3}}){!}}}\right)}{\mathtt{\,\small\textbf+\,}}{\left({\frac{{\mathtt{8}}{!}}{{\mathtt{3}}{!}{\mathtt{\,\times\,}}({\mathtt{8}}{\mathtt{\,-\,}}{\mathtt{3}}){!}}}\right)}\right)}{{\left({\frac{{\mathtt{15}}{!}}{{\mathtt{3}}{!}{\mathtt{\,\times\,}}({\mathtt{15}}{\mathtt{\,-\,}}{\mathtt{3}}){!}}}\right)}}} = {\frac{{\mathtt{61}}}{{\mathtt{455}}}} = {\mathtt{0.134\: \!065\: \!934\: \!065\: \!934\: \!1}}$$

There you go, Alan's answer and my answer look different but they work out the same because the 3! in mine cancels out.

Melody  Jan 27, 2015

### 18 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details