We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
369
1
avatar

Prove (a - b)^3 + (b - c)^3 + (c - a)^3 = 3(a-b)(b-c)(c-a) without expanding using the Multivariable Factor Theorem

 Aug 21, 2018
 #1
avatar+100519 
+1

(a - b)^3 + (b - c)^3  + ( c -a)^3  =

[( a - b ) + (b - c)] [ ( a - b)^2 - ( a - b)(b - c) + ( b - c)^2 ] + (c -a)^3 =

( a - c) [ a^2 - 2ab + b^2  - [ ab - b^2 - ac + bc] + b^2 - 2bc + c^2 ] + (c -a)^3 =

 

(a - c)  [ a^2 - 2ab + b^2  - ab + b^2 + ac- bc  + b^2 - 2bc + c^2 ]  + (c -a)^3  =

 

(a - c) [ a^2 - 3ab + 3b^2 + ac - 3bc  + c^2 ]  + (c - a)^3 =

 

(a - c) [ a^2 - 3ab + 3b^2 + ac - 3bc  + c^2 ] + ( c - a)^3]=

 

(a - c) [ a^2 - 3ab + 3b^2 + ac - 3bc  + c^2 ] + [ (c - a) (c - a)^2 ]  =

 

- (c - a) [ a^2 - 3ab + 3b^2 + ac - 3bc + c^2 ] [ (c - a)( c^2 - 2ac + a^2 ]  =

 

(c - a) [ -a^2 + 3ab - 3b^2 - ac + 3bc - c^2 + c^2 - 2ac + a^2 ] =

 

(c -a) [ 3ab  - 3b^2 - 3ac + 3bc] =

(c - a) [ 3ab - 3ac - 3b^2 + 3bc ] =

(c - a) [ 3a ( b - c) - 3b ( b - c) ]  =

(c - a) [3(a - b)) ( b - c)]  = 

3(a - b)(b - c) (c - a)

 

 

cool cool cool

 Aug 21, 2018

8 Online Users