+0  
 
0
219
1
avatar

Prove (a - b)^3 + (b - c)^3 + (c - a)^3 = 3(a-b)(b-c)(c-a) without expanding using the Multivariable Factor Theorem

 Aug 21, 2018
 #1
avatar+94321 
+1

(a - b)^3 + (b - c)^3  + ( c -a)^3  =

[( a - b ) + (b - c)] [ ( a - b)^2 - ( a - b)(b - c) + ( b - c)^2 ] + (c -a)^3 =

( a - c) [ a^2 - 2ab + b^2  - [ ab - b^2 - ac + bc] + b^2 - 2bc + c^2 ] + (c -a)^3 =

 

(a - c)  [ a^2 - 2ab + b^2  - ab + b^2 + ac- bc  + b^2 - 2bc + c^2 ]  + (c -a)^3  =

 

(a - c) [ a^2 - 3ab + 3b^2 + ac - 3bc  + c^2 ]  + (c - a)^3 =

 

(a - c) [ a^2 - 3ab + 3b^2 + ac - 3bc  + c^2 ] + ( c - a)^3]=

 

(a - c) [ a^2 - 3ab + 3b^2 + ac - 3bc  + c^2 ] + [ (c - a) (c - a)^2 ]  =

 

- (c - a) [ a^2 - 3ab + 3b^2 + ac - 3bc + c^2 ] [ (c - a)( c^2 - 2ac + a^2 ]  =

 

(c - a) [ -a^2 + 3ab - 3b^2 - ac + 3bc - c^2 + c^2 - 2ac + a^2 ] =

 

(c -a) [ 3ab  - 3b^2 - 3ac + 3bc] =

(c - a) [ 3ab - 3ac - 3b^2 + 3bc ] =

(c - a) [ 3a ( b - c) - 3b ( b - c) ]  =

(c - a) [3(a - b)) ( b - c)]  = 

3(a - b)(b - c) (c - a)

 

 

cool cool cool

 Aug 21, 2018

10 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.