+0  
 
-2
53
2
avatar+766 

\(cos(4x)=1-8sin^2(x)cos^2(x)\)

I know that I need to start the problem on the left, like this:

\(cos(2(2x))\)

Then treat 2x like it equals θ.

\(cos(2\theta)\)

Then I use a double angle formula, but since there are 3 for cosine, I don't know which one to use.

AdamTaurus  Apr 6, 2018
Sort: 

2+0 Answers

 #1
avatar
0

Misread the question! Sorry.

Guest Apr 6, 2018
edited by Guest  Apr 6, 2018
 #2
avatar
0

Verify the following identity:
cos(4 x) = 1 - 8 sin(x)^2 cos(x)^2

cos(4 x) = cos(4 x) = 2 cos(2 x)^2 - 1:


2 cos(2 x)^2 - 1 = ^?1 - 8 cos(x)^2 sin(x)^2

cos(2 x) = 2 cos(x)^2 - 1:


2 (2 cos(x)^2 - 1)^2 - 1 = ^?1 - 8 cos(x)^2 sin(x)^2

(2 cos(x)^2 - 1)^2 = 1 - 4 cos(x)^2 + 4 cos(x)^4:


2 1 - 4 cos(x)^2 + 4 cos(x)^4 - 1 = ^?1 - 8 cos(x)^2 sin(x)^2

2 (1 - 4 cos(x)^2 + 4 cos(x)^4) - 1 = 1 - 8 cos(x)^2 + 8 cos(x)^4:


1 - 8 cos(x)^2 + 8 cos(x)^4 = ^?1 - 8 cos(x)^2 sin(x)^2

sin(x)^2 = 1 - cos(x)^2:


1 - 8 cos(x)^2 + 8 cos(x)^4 = ^?1 - 8 cos(x)^2 1 - cos(x)^2

-8 cos(x)^2 (1 - cos(x)^2) = 8 cos(x)^4 - 8 cos(x)^2:
1 - 8 cos(x)^2 + 8 cos(x)^4 = ^?8 cos(x)^4 - 8 cos(x)^2 + 1

 

The left-hand side and right-hand side are identical:                                                                   (identity has been verified)

Guest Apr 6, 2018

14 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details