+0  
 
-1
103
2
avatar+771 

\(cos(4x)=1-8sin^2(x)cos^2(x)\)

I know that I need to start the problem on the left, like this:

\(cos(2(2x))\)

Then treat 2x like it equals θ.

\(cos(2\theta)\)

Then I use a double angle formula, but since there are 3 for cosine, I don't know which one to use.

AdamTaurus  Apr 6, 2018
 #1
avatar
0

Misread the question! Sorry.

Guest Apr 6, 2018
edited by Guest  Apr 6, 2018
 #2
avatar
0

Verify the following identity:
cos(4 x) = 1 - 8 sin(x)^2 cos(x)^2

cos(4 x) = cos(4 x) = 2 cos(2 x)^2 - 1:


2 cos(2 x)^2 - 1 = ^?1 - 8 cos(x)^2 sin(x)^2

cos(2 x) = 2 cos(x)^2 - 1:


2 (2 cos(x)^2 - 1)^2 - 1 = ^?1 - 8 cos(x)^2 sin(x)^2

(2 cos(x)^2 - 1)^2 = 1 - 4 cos(x)^2 + 4 cos(x)^4:


2 1 - 4 cos(x)^2 + 4 cos(x)^4 - 1 = ^?1 - 8 cos(x)^2 sin(x)^2

2 (1 - 4 cos(x)^2 + 4 cos(x)^4) - 1 = 1 - 8 cos(x)^2 + 8 cos(x)^4:


1 - 8 cos(x)^2 + 8 cos(x)^4 = ^?1 - 8 cos(x)^2 sin(x)^2

sin(x)^2 = 1 - cos(x)^2:


1 - 8 cos(x)^2 + 8 cos(x)^4 = ^?1 - 8 cos(x)^2 1 - cos(x)^2

-8 cos(x)^2 (1 - cos(x)^2) = 8 cos(x)^4 - 8 cos(x)^2:
1 - 8 cos(x)^2 + 8 cos(x)^4 = ^?8 cos(x)^4 - 8 cos(x)^2 + 1

 

The left-hand side and right-hand side are identical:                                                                   (identity has been verified)

Guest Apr 6, 2018

11 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.