+0  
 
+1
657
4
avatar+36 

prove tan x cos 2x + tan x + sin 2 x

nlbradshaw0430  Apr 13, 2017
edited by nlbradshaw0430  Apr 13, 2017
 #1
avatar+86890 
+1

I think you're missing something, here......there's nothing to prove....

 

 

cool cool cool

CPhill  Apr 13, 2017
edited by CPhill  Apr 13, 2017
 #2
avatar+92624 
0

Maybe it should just be simplify????

 

 tan x cos 2x + tan x + sin 2 x

 

\(tan x *cos 2x + tan x + sin 2 x\\ =\frac{sinx}{cosx} *(cos^2x-sin^2x)+ \frac{sinx}{cosx} + 2sinxcosx\\ =sinxcosx-\frac{sin^3x}{cosx}+ \frac{sinx}{cosx} + 2sinxcosx\\ =3sinxcosx-\frac{sin^3x}{cosx}+ \frac{sinx}{cosx} \\ =3sinxcosx- \frac{sinx}{cosx} (sin^2x-1)\\ =3sinxcosx- \frac{sinx}{cosx} (-cos^2x)\\ =3sinxcosx+ (sinxcosx)\\ =4sinxcosx\\ =2sin2x \)

 

Lets see if I could have done this more simply....

 

\( tan x cos 2x + tan x + sin 2 x\\ = tan x (cos^2x-sin^2x) + tan x + sin 2 x\\ = tan x (cos^2x-sin^2x+1) + sin 2 x\\ = tan x (cos^2x+cos^2x) + sin 2 x\\ =\frac{sinx}{cosx} (2cos^2x) + sin 2 x\\ =2sinxcosx + sin 2 x\\ =sin2x + sin 2 x\\ =2sin2x \\\)

 

So it can be seen that 

tan x cos 2x + tan x = sin 2 x

which I guess was meant to be the question in the first place.   (as hectictar and CPhill have already noted.  Thanks guys. :)

Melody  Apr 13, 2017
edited by Melody  Apr 13, 2017
 #3
avatar+86890 
+1

tan x cos 2x + tan x + sin 2 x      ......simplified  ???

 

[sinx/ cosx] [ cos^2x - sin^2x]  + sinx/cosx +  2sinx cosx

 

sinxcosx  - sin^3x/ cosx   +  sinx/cosx + 2sinxcosx

 

3sinxcosx  -  [sinx ( sin^2x - 1)] / cosx

 

3sinxcosx  -  [ -sinx (1 - sin^2x) ]/ cosx

 

3sinxcosx  + [sinx cos^2x]/cosx

 

3sinxcosx + sinxcosx  =

 

4sinxcosx       or       2sin(2x)

 

 

 

cool cool cool

CPhill  Apr 13, 2017
 #4
avatar+86890 
+2

OK...I see now....

 

tan x cos 2x + tan x = sin 2 x

 

tanx (cos 2x + 1)

 

tan x ( 2cos^2x - 1 + 1)

 

tanx ( 2cos^2x)

 

2 * [sinx / cosx] * cos^2x 

 

2sin x cos x    =    sin 2x

 

Thanks to hectictar for bringing this to my attention....!!!!

 

 

cool cool cool

CPhill  Apr 13, 2017
edited by CPhill  Apr 13, 2017

23 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.