+0  
 
0
193
2
avatar

Prove that if w, z are complex numbers such that |w| = |z| = 1 and \(wz\ne-1\), then \(\frac{w+z}{1+wz}\) is a real number.

Guest Sep 19, 2018
 #1
avatar+20640 
+9

Prove that if w, z are complex numbers such that \(|w| = |z| = 1\) and \(wz\ne-1\),

then \(\dfrac{w+z}{1+wz}\)  is a real number.

 

\(\begin{array}{|rcll|} \hline |w| = 1 ~&\Rightarrow& ~|w|^2 = 1 \\ |z| = 1 ~&\Rightarrow& ~|z|^2 = 1 \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline && \dfrac{w+z}{1+wz} \\\\ &=& \dfrac{w}{1+wz} + \dfrac{z}{1+wz} \\\\ &=& \dfrac{1}{ \dfrac{1}{w} + z} + \dfrac{1} { \dfrac{1}{z} + w} \quad | \quad \dfrac{1}{w} = \dfrac{\bar{w}}{|w|^2}=\bar{w},\ \quad \dfrac{1}{z} = \dfrac{\bar{z}}{|z|^2}=\bar{z} \\\\ &=& \dfrac{1}{ \bar{w} + z} + \dfrac{1} { \bar{z} + w} \\\\ &=& \dfrac{ \bar{z} + w+\bar{w} + z}{(\bar{w} + z)(\bar{z} + w)} \\\\ &=& \dfrac{ ( w+\bar{w}) + (z+\bar{z} )}{(\bar{w} + z)(w+\bar{z})} \quad | \quad w = a+bi,\quad \bar{w} = a-bi, \quad z=c+di, \quad \bar{z}=c-di \\\\ &=& \dfrac{ ( a-bi+a-bi) + (c+di+c-di )}{(a-bi + c+di)(a+bi+c-di)} \\\\ &=& \dfrac{ 2( a+c) }{[~(a+c)+(d-b)i~][~(a+c)-(d-b)i~]} \\\\ &=& \dfrac{ 2( a+c) }{[~(a+c)^2-(d-b)^2i^2~]} \quad | \quad i^2=-1 \\\\ &=& \dfrac{ 2( a+c) }{ (a+c)^2+(d-b)^2 } \\ \hline \end{array}\)

 

laugh

heureka  Sep 20, 2018
 #2
avatar+3187 
+2

\(\dfrac{w+z}{1+w z}= \dfrac{(w+z)(1+w z)^*}{(1+w z)(1+w z)^*} = \\ \dfrac{w+z + w(wz)^* + z(wz)^*}{|1+wz|^2}\)

 

The denominator is real so we just need to show the numerator is also real

 

\(\text{Noting that }(wz)^* = w^* z^* \text{ we have}\\ w+z+w(wz)^*+z(wz)^* = \\ w + z + w w^* z^* + z z^* w^* = \\ w + z + 1\cdot z^* + 1 \cdot w^* = \\ (w+w^*)+(z+z^*) = 2Re(w) + 2Re(z) = \\ 2Re(w+z) \in \mathbb{R} \)

Rom  Sep 20, 2018

7 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.