cos^2x-sin^2x/ctg^2x-tg^2x=sin^2x*cos^2x
First, notice that :
ctg^2x - tan^2x = cos^2x/sin^2x - sin^2x/cos^2x = [cos^4x - sin^4x]/[sin^2x cos^2x)..so we have..
[cos^2x - sin^2x] [sin^2xcos^2x] / [cos^4x - sin^4x] =
[cos^2x - sin^2x] [sin^2xcos^2x] / [ (cos^2x - sin^2x) (cos^2x + sin^2x) ] =
[sin^2xcos^2x] / [sin^2x + cos^2x] and [sin^2x + cos^2x ] = 1 .....so....
sin^2xcos^2x = sin^2xcos^2x
cos^2x-sin^2x/ctg^2x-tg^2x=sin^2x*cos^2x
First, notice that :
ctg^2x - tan^2x = cos^2x/sin^2x - sin^2x/cos^2x = [cos^4x - sin^4x]/[sin^2x cos^2x)..so we have..
[cos^2x - sin^2x] [sin^2xcos^2x] / [cos^4x - sin^4x] =
[cos^2x - sin^2x] [sin^2xcos^2x] / [ (cos^2x - sin^2x) (cos^2x + sin^2x) ] =
[sin^2xcos^2x] / [sin^2x + cos^2x] and [sin^2x + cos^2x ] = 1 .....so....
sin^2xcos^2x = sin^2xcos^2x