Prove this identity.
1+sinθ1−sinθ=(secθ+tanθ)2
From everything I've tried, I don't think this is an identity but maybe I'm wrong.
1+sin(θ)1−sin(θ)⋅1+sin(θ)1+sin(θ)=(1+sin(θ))21−sin2(θ)=(1+sin(θ)cos(θ))2=(sec(θ)+tan(θ))2
(sec x + tanx ) ^2 =
(1/ cosx + sinx / cosx)^2 =
(1 + sin x)^2 (1+ sin x) (1 + sin x) (1 + sin x) (1 + sinx) 1 + sin x
_________ = _________________ = ___________________ = ___________
cos^2x 1 - sin^2x (1 + sin x)(1 - sin x) 1 - sin x