+0  
 
+1
325
4
avatar

Answer in radians: \(\arccos\left(\sqrt{\frac{1+\sqrt{\frac{1-\sqrt{\frac{1-\sqrt{\frac{1+\frac{\sqrt{3}}{2}}{2}}}{2}}}{2}}}{2}}\right)\)

 Apr 3, 2022
 #1
avatar+14995 
+2

\(\arccos\left(\sqrt{\frac{1+ \sqrt{\frac{1-\sqrt{\frac{1-\sqrt{\frac{1+ \frac{\sqrt{3}}{2}}{2}}}{2}}}{2}}}{2}}\right)=\color{blue}0.425424005174 =\dfrac{\pi}{7\frac{5}{13}}=\dfrac{13}{96}\pi\)

laugh  !

.
 Apr 3, 2022
edited by asinus  Apr 3, 2022
 #2
avatar
+1

Hello Asinus, Thank you very much for the answer. I got the same answer as well, but I am not exactly sure how to convert it to radians...

 

Do you know any I can do that?

Guest Apr 3, 2022
 #3
avatar+746 
+1

Hey Guest! The formula used for the Radian Conversion is -> Radians = (Degrees × π)/180°. 

ilovepuppies1880  Apr 3, 2022
 #4
avatar+14995 
+2

The result is given in radians.

Set the 2.0 calculator to rad. Then give arccos.

laugh  !

asinus  Apr 3, 2022
edited by asinus  Apr 3, 2022

1 Online Users