+0  
 
0
229
1
avatar

A regular tetrahedron is a pyramid with four faces, each of which is an equilateral triangle.

 

 

Let $V$ be the volume of a regular tetrahedron whose sides each have length $1$. What is the exact value of $V^2$ ?

 Jun 30, 2018
 #1
avatar+98198 
+1

The  volume of a regualr tetrahedron with edge length " a "   is given  by

 

a^3 /  √72

 

So...the volume of  the tetrahedron  is

 

1^3  /√72   = 

 

1  / √72   [units^3]

 

So

 

V^2  =    1 /72   

 

 

 

cool cool cool

 Jun 30, 2018

25 Online Users

avatar
avatar
avatar