+0  
 
0
98
1
avatar

What is the length of CB?  Round your answer to the nearest hundredths place.

 

 Mar 15, 2021
 #1
avatar+73 
0

we can use the Pythagorean theorem.

 

\(AB^2 = AC^2+CB^2\)

\(21^2 = 14^2 + CB^2\)

\(441 = 196 + CB^2\)

\(245 = CB^2\)

\(CB = \sqrt{245}\) 

\(15.65\)

 

 

hope this helped! please let me know if you are still confused smiley

 Mar 15, 2021

6 Online Users

avatar
avatar