We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Pythagorean theorem questions plz help asap and explain

0
163
2

1. In the diagram below, if AD=30, what is BC?

2. We know BE=CE and AE=2DE. What is AD/BC?

3. Given that AF=\(4sqrt(3)\) and FC=5sqrt(3) ,what is BC?

Oct 28, 2018

### 2+0 Answers

#1
+102422
+1

First one

Let the intersection of    AD  and BC   =  E

Triangle  AEB  is similar to Triangle   DEC

Let DE  =  x     and let  AE  =  30 - x

So

AE / AB   =  DE / DC

( 30 - x) / 20   =  x / 4       cross-multiply

4 (30 - x)   =  20x     simplify

120 - 4x  =  20x       add 4x to both sides

120  =  24x       divide both sides by  24

5  =  x   =  DE

So....CE  = sqrt [ DE^2  - DC^2]  =  sqrt [ 5^2  - 4^2 ] =  sqrt [ 9]  =  3

And BE is 5 times this  =  15

So....BC  =  BE + EC  =  15 +  3   =   18

Oct 31, 2018
edited by CPhill  Oct 31, 2018
#2
+102422
+2

Second one

Triangle ABE  similar to triangle ECD

So

AE / BE  =  DE / CD

2DE / BE  =  DE / CD     ......so......

2DE / DE   =   BE / CD

2  = BE / CD

So   BE  =  2CD   ⇒   CD  =  BE / 2   =  EC / 2

AD  =  sqrt  ( AE^2  + DE^2]  =  sqrt [ (2DE)^2 + DE^2]  =  sqrt(5)DE

And

DE  =  sqrt  [ EC^2  + (EC/2)^2]  =   EC sqrt(5) / 2    =  BEsqrt(5)/2

So

DE  = BE sqrt(5) / 2

2DE /sqrt(5)  = BE

So

BC  = 2BE

So

2BE  =    4DE / sqrt(5)  =  BC

So

AD / BC  =  sqrt (5) DE  /  [  4DE / sqrt (5) ]

AD /BC  =     sqrt (5) * sqrt(5) DE  / [ 4DE ]  =  5DE / [ 4 DE ]   =   5 / 4

Oct 31, 2018