(1) -8x - 12y = 36 -> 8x + 12y = -36
(2) 5y - 6x = 41 -> -6x + 5y = 41
8x+12y=−36−6x+5y=41
\boxed{8x+12y=−36−6x+5y=41}
x=|−3612415||812−65|=−36∗5−41∗128∗5−(−6)∗12=−180−49240+72=−672112=−6x=−6y=|8−36−641||812−65|=8∗41−(−6)(−36)8∗5−(−6)∗12=328−21640+72=112112=1y=1
\\x=
\frac{|−3612415|}{|812−65|}
=\frac{-36*5-41*12}{8*5-(-6)*12}
=\frac{-180-492}{40+72}
=\frac{-672}{112}=-6\\
\boxed{x=-6}
\\y=
\frac{|8−36−641|}{|812−65|}
=\frac{8*41-(-6)(-36)}{8*5-(-6)*12}
=\frac{328-216}{40+72}
=\frac{112}{112}=1\\
\boxed{y=1}
−8x − 12y = 36
-6x + 5y = 41 We can use the elimination method to solve this
We'll eliminate "x" by multiplying the top equation by -6 on both sides and by multiplying the bottom equation by 8 on both sides .....this gives us
48x + 72y = -216
-48x + 40y = 328 Now....add the equations together
112y = 112 So...it's clear that y = 1
To find "x," substitute 1 for y in any of the equations....I'll use -6x + 5y = 41
-6x + 5(1) = 41
-6x + 5 = 41 subtract 5 ftom both sides
-6x = 36 divide by -6 on both sides
x = -6
So....x = -6 and y = 1......you should verify that these "work" in the other equations...I think you will find that they do......
(1) -8x - 12y = 36 -> 8x + 12y = -36
(2) 5y - 6x = 41 -> -6x + 5y = 41
8x+12y=−36−6x+5y=41
\boxed{8x+12y=−36−6x+5y=41}
x=|−3612415||812−65|=−36∗5−41∗128∗5−(−6)∗12=−180−49240+72=−672112=−6x=−6y=|8−36−641||812−65|=8∗41−(−6)(−36)8∗5−(−6)∗12=328−21640+72=112112=1y=1
\\x=
\frac{|−3612415|}{|812−65|}
=\frac{-36*5-41*12}{8*5-(-6)*12}
=\frac{-180-492}{40+72}
=\frac{-672}{112}=-6\\
\boxed{x=-6}
\\y=
\frac{|8−36−641|}{|812−65|}
=\frac{8*41-(-6)(-36)}{8*5-(-6)*12}
=\frac{328-216}{40+72}
=\frac{112}{112}=1\\
\boxed{y=1}