+0  
 
0
80
1
avatar+217 

Given the Quadratic Function f(x)=ax^2+bx+c meets the following conditions f(0)=2; f(1)=-1; its graph intersects the x-axis and cut the segment with a length of 2 sqrt(2), please determine the expression of the Quadratic Function. 

 

thank you so much in advance!!

yasbib555  Sep 18, 2018
 #1
avatar+3167 
+1

\(f(0)=2 \Rightarrow c=2 \\ \\ \text{Then we have }a+b+2=-1 \Rightarrow b=-3-a\)

 

\(\text{ so we have }f(x) = a x^2 -(3+a)x + 2\)

 

\(\text{This has zeros at }\\ x = \dfrac{(3+a)\pm \sqrt{(3+a)^2-8a}}{2a}\)

 

\(\text{subtracting we have}\\ \dfrac{\sqrt{(3+a)^2-8a}}{a}=\dfrac{\sqrt{9-2a+a^2}}{a} = 2\sqrt{2}\)

 

\(\dfrac{9-2a+a^2}{a^2}= 8 \\ \\ 7a^2+2a-9=0 \\ \\ a=\dfrac{-2\pm \sqrt{4+252}}{14}=\dfrac{-2\pm 16}{14} = 1,~-\dfrac 9 7\)

 

\(f(x) = x^2 -4x+2 \text{ or }-\dfrac 9 7 x^2 - \dfrac{12}{7}+2\)

Rom  Sep 18, 2018

4 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.