+0

# quadratic graph help

+1
555
1
+598

The graph of the quadratic \$y = ax^2 + bx + c\$ has the following properties: (1) The maximum value of \$y = ax^2 + bx + c\$ is 5, which occurs at \$x = 3\$. (2) The graph passes through the point \$(0,-13)\$. If the graph passes through the point \$(4,m)\$, then what is the value of \$m\$?

Jul 21, 2017

### Best Answer

#1
+17747
+3

If the x-value of the vertex (maximum value) is 3 and the y-value is 5, the vertex occurs at (3, 5).

An equation for a parabola is:  y - k  =  a(h - h)2       [ The vertex occurs at (h, k) ]

--->                                      y - 5  =  a(x - 3)2

Since the graph passes through the point (0, -13), we have:

-13 - 5  =  a(0 - 3)2

- 18  =  a(-3)2

-18  =  a·9

a  =  -2

So, the equation is:  y - 5  =  -2(x - 3)2

For the point (4, m),  x = 4  and  y = m   --->     m - 5  =  -2(4 - 3)2

Now, solve this for m.

Jul 21, 2017

### 1+0 Answers

#1
+17747
+3
Best Answer

If the x-value of the vertex (maximum value) is 3 and the y-value is 5, the vertex occurs at (3, 5).

An equation for a parabola is:  y - k  =  a(h - h)2       [ The vertex occurs at (h, k) ]

--->                                      y - 5  =  a(x - 3)2

Since the graph passes through the point (0, -13), we have:

-13 - 5  =  a(0 - 3)2

- 18  =  a(-3)2

-18  =  a·9

a  =  -2

So, the equation is:  y - 5  =  -2(x - 3)2

For the point (4, m),  x = 4  and  y = m   --->     m - 5  =  -2(4 - 3)2

Now, solve this for m.

geno3141 Jul 21, 2017

### New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.