+0  
 
0
107
1
avatar+63 

The equations below have the solution (1,11). Determine the values of h and m.

y = 3(x-h)^2 + 8                                                         y = mx + 17

 

thanks! Oh and I think solution means point where they intersect

 Dec 9, 2018
 #1
avatar+98102 
+1

y = 3(x-h)^2 + 8  and    y = mx + 17   

 

Since the point (1,11) is on both graphs, this implies that

 

11 = m(1) + 17

-6 = m

 

And also

 

11 = 3(1 - h)^2 + 8

3 = 3(1 - h)^2

1 = (1 - h)^2

Implies that h = 0    or    h = 2

 

A look at graph here, Drazil  confirms that  m = -6   and h = 2 are correct :

 

https://www.desmos.com/calculator/7iezpmqnrx

 

 

cool cool cool

 Dec 9, 2018

39 Online Users

avatar
avatar
avatar
avatar
avatar