+0  
 
0
260
1
avatar

 If $a$ and $b$ are integers with $a > b$, what is the smallest possible positive value of \(\frac{a+b}{a-b} + \frac{a-b}{a+b}\)?

Guest Jul 29, 2017
 #1
avatar+87639 
+1

 

(a + b)  / (a -b) +  (a - b) / (a + b)  →  [   (a + b)^2 +  ( a - b)^2 ]  / [ a^2 - b^2]  →

 

[ a ^ 2 + 2ab + b^2 + a^2 - 2ab + b^2) / [ a^2 - b^2]  →

 

[ 2a ^2 + 2 b^2]  / [ a^2  - b^2] →

 

2 [ a^2 + b^2] / [a^2 - b^2 ] → 

 

This expression will have the smallest possible value when the numerator of  a^2 + b^2  =  the denominator of a^2 - b^2

 

Note that when   a = any integer > 0 and  b  = 0   the numerator of  a^2 + b^2  =  the denominator of a^2 - b^2  = 1

 

So....the smallest positive value  is 2

 

 

cool cool cool

CPhill  Jul 29, 2017
edited by CPhill  Jul 29, 2017
edited by CPhill  Jul 29, 2017

19 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.