+0  
 
0
39
1
avatar

The smallest distance between the origin and a point on the parabola y = x^2 -5 can be expressed as "sqrt(a)/b," where "a" is not divisible by the square of any prime. Find a+b .

Guest Apr 19, 2018
Sort: 

1+0 Answers

 #1
avatar+86613 
+1

y  = x^2  - 5

 

Let the point on the parabola  be  (x, x^2 - 5)

 

The distance, D, between this point and the origin can be represented by :

 

D  = sqrt  [  x^2  +  ( x^2 - 5)^2 ]

D  = sqrt [ x^2 + x^4 - 10x^2 + 25]

D  = [ x^4 - 9x^2 + 25 ]^(1/2)

 

Take the derivative of this and set to 0

 

D'  =  [(1/2] [(x^4 - 9x^2 + 25 ]^(-1/2)* (4x^3 - 18x)  = 0

 

This will equal 0  when  (4x^3 - 18x)  = 0       factor  this

 

2x (2x^2 - 9)  = 0

Set both factors to 0   and solve for x

 

2x  =  0                     2x^2  - 9  = 0

x  = 0                         2x^2  =  9

reject                           x^2 = 9/2

                                   

 

So....the distance, D, is

 

D  = sqrt  [ (9/2)^2 - 9(9/2) + 25 ]  =  sqrt [  81/4 - 81/2 + 25 ] =

 

sqrt [ 81/ 4 - 162/4  + 100/4]  =

 

sqrt  [ 81 - 162 + 100]  / 2  =

 

sqrt  [ 19 ] /2

 

So....a +  b  =   19 + 2   =  21

 

 

cool cool cool

CPhill  Apr 19, 2018

26 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy