+0  
 
0
328
1
avatar

I choose a random integer n between 1 and 10 inclusive. What is the probability that for the n I chose, there exist no real solutions to the equation x(x + 8) = -n? Express your answer as a common fraction.

 Feb 27, 2021
 #1
avatar+2272 
0

 

I choose a random integer n between 1 and 10 inclusive. What is the probability that for the n I chose,     

there exist no real solutions to the equation x(x + 8) = -n? Express your answer as a common fraction.     

 

                                                           x(x + 8)  =  –n     

                                                           x2 + 8x  =  –n     

                                                           x2 + 8x + n  =  0     

 

For there to be no real solutions, the discriminant has to be negative.     

 

                                                           b2 – 4ac < 0     

                                                           82 – (4)(1)(n) < 0     

                                                           64 – 4n < 0    

 

If n is anything larger than 16, there is no real solution.     

 

If n is anything less than 16, there are two solutions for x.     

 

So the probability that any number between 1 and 10 will 

result in no real solution is 0 ... that's a zero.     

.     

 Jul 14, 2025

1 Online Users