+0  
 
0
119
1
avatar

There are 5 quadratics below. Four of them have two distinct roots each. The other has only one distinct root; find the value of that root.

 

4x^2 + 16x + 8

-x^2 + 4x + 5

9x^2 - 6x + 1

2x^2 - 8x + 4

225x^2 - 30x + 9

 Feb 13, 2022
 #1
avatar+13892 
+2

Find the value of that root.

 

Hello Guest!

 

\(ax^2+bx+c\)

In the searched quadratic must apply:   \(b^2-4ac=0 \)

 

\(4x^2 + 16x + 8\ |\ b^2-4ac\neq 0\\ x^2 + 4x + 5\ |\ b^2-4ac\neq 0\\ 9x^2 - 6x + 1\ |\ \color{blue}b^2-4ac=(-6)^2-4\cdot 9\cdot 1=0\\ 2x^2 - 8x + 4\ |\ b^2-4ac\neq 0\\ 225x^2 - 30x + 9\ |\ \color{red}b^2-4ac< 0 \)  

 

The searched quadratic function is:

\(\color{blue}9x^2 - 6x + 1=0\\ x = {6 \pm \sqrt{36-4\cdot 9\cdot 1} \over 2\cdot 9}\\The\ value\ is\\ \color{blue}x=\dfrac{1}{3}\)

laugh  !

 Feb 13, 2022
edited by asinus  Feb 13, 2022
edited by asinus  Feb 13, 2022
edited by asinus  Feb 13, 2022
edited by asinus  Feb 13, 2022

13 Online Users

avatar