+0  
 
0
64
1
avatar

There are 5 quadratics below. Four of them have two distinct roots each. The other has only one distinct root; find the value of that root.

 

4x^2 + 16x + 8

-x^2 + 4x + 5

9x^2 - 6x + 1

2x^2 - 8x + 4

225x^2 - 30x + 9

 Feb 13, 2022
 #1
avatar+13581 
+2

Find the value of that root.

 

Hello Guest!

 

\(ax^2+bx+c\)

In the searched quadratic must apply:   \(b^2-4ac=0 \)

 

\(4x^2 + 16x + 8\ |\ b^2-4ac\neq 0\\ x^2 + 4x + 5\ |\ b^2-4ac\neq 0\\ 9x^2 - 6x + 1\ |\ \color{blue}b^2-4ac=(-6)^2-4\cdot 9\cdot 1=0\\ 2x^2 - 8x + 4\ |\ b^2-4ac\neq 0\\ 225x^2 - 30x + 9\ |\ \color{red}b^2-4ac< 0 \)  

 

The searched quadratic function is:

\(\color{blue}9x^2 - 6x + 1=0\\ x = {6 \pm \sqrt{36-4\cdot 9\cdot 1} \over 2\cdot 9}\\The\ value\ is\\ \color{blue}x=\dfrac{1}{3}\)

laugh  !

 Feb 13, 2022
edited by asinus  Feb 13, 2022
edited by asinus  Feb 13, 2022
edited by asinus  Feb 13, 2022
edited by asinus  Feb 13, 2022

17 Online Users