+0  
 
0
32
1
avatar

What real value of  produces the smallest value of the quadratic t^2 - 9t - 36 + t^2 - t + 4?

 Oct 7, 2021
 #1
avatar+12384 
+1

What real value  produces the smallest value of the quadratic t^2 - 9t - 36 + t^2 - t + 4?

 

Hello Guest!

 

\(f(t)=t^2 - 9t - 36 + t^2 - t + 4\\ f(t)=2t^2-10t-32\\ \frac{df(t)}{dt}=4t-10=0\)

\(t=2.5\)

 

The value t = 2.5 gives the smallest value of the square t ^ 2 - 9t - 36 + t ^ 2 - t + 4, namely - 44.5.

laugh  !

 Oct 7, 2021

25 Online Users