Let a and b be the roots of the quadratic 2x^2 - 8x + 7 = x^2 - 5x + 3. Compute a^3*b + a*b^3.
\(ab^3 + a^3b = ab(a^2 + b^2) = ab((a+b)^2 - 2ab)\)
\(x^2 - 3x +4 = 0\)
\(a + b = -{b \over a} = 3\)
\(ab = {c\over a} = 4\)
\(ab^3 + a^3b = ab((a+b)^2 - 2ab) = 4(9 - 8) = \color{brown}\boxed 4\)
.