Find the minimum value of y = 5x^2 - 12x + 15.
Hello Guest!
\( y = 5x^2 - 12x + 15\\ \frac{dy}{dx}=10x-12=0\\ x_{min}=\frac{12}{10}\)
\(x_{Pmin}=\frac{6}{5}\)
\(y_{min}=5\cdot \frac{36}{25}-12\cdot \frac{6}{5}+15\)
\(y_{min}=\frac{5\cdot 36-12\cdot6\cdot 5+15\cdot 25}{25}=\frac{195}{25}\)
\(y_{min}=\frac{39}{5}\)
\(P_{min}(1.2,7.8)\)
!
If you are not in calculus, you may not know how to do the deriviative of the function.
This is a bowl shaped parabola (because the leading coefficient is positive)
the minumum value of the fiunction will occur at an 'x' value of - b/2a
where b = -12 and a = 5
Use THIS 'x' value in the equation to calculate the minumum value ('y') of the function.....